Gut microbiome production of short-chain fatty acids and obesity in children

  • Selvasankar Murugesan
  • Khemlal Nirmalkar
  • Carlos Hoyo-Vadillo
  • Matilde García-Espitia
  • Daniela Ramírez-Sánchez
  • Jaime García-MenaEmail author


Obesity has been a worldwide multifactorial epidemic malady for the last 2 decades. Changes in gut microbiota composition and its metabolites — short-chain fatty acids (SCFAs) — have been associated with obesity. Recent evidence suggests that SCFAs made by the gut microbiota may regulate directly or indirectly physiological and pathological processes in relation to obesity. We review the influence of gut microbiota in energy, glucose, and lipid homeostasis control via their metabolites. Gut microbial disturbances in obese children may have a role in their metabolism. At first glance, excessive short-chain fatty acids produced by a particular gut microbiota represent an additional energy source, and should cause an imbalance in energy regulation, contributing to obesity. However, simultaneously, SCFA participates in glucose-stimulated insulin secretion from the pancreatic β-cells through interaction with the FFA2 and FFA3 receptors, and release of peptide hormones which control appetite. This apparent contradictory situation may indicate the involvement of additional particular bacteria or bacterial components or metabolites that may trigger regulatory cascades by interaction with some G-protein-coupled membrane receptors.



Cinvestav-IPN, Fundación Miguel Alemán A. C., CONACyT 163235 INFR-2011-01, and FONSEC SS/IMSS/ISSSTE-CONACYT-233361 grants to JGM supported this work. We thank a Postdoctoral Fellowship from FONSEC SS/IMSS/ISSSTE-CONACYT-233361 to SM, a M. Sc. Fellowship CONACyT394921 to DRS.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.


  1. 1.
    OECD (2014) Obesity Update 2014.
  2. 2.
    WHO (2012) Population-based approaches to childhood obesity prevention. Geneva, World Health Organization, 2012. Available at: Accessed March 2017
  3. 3.
    Hartstra AV, Bouter KE, Bäckhed F, Nieuwdorp M (2015) Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38:159–165CrossRefPubMedGoogle Scholar
  4. 4.
    Aceves-Martins M, Llauradó E, Tarro L et al (2016) Obesity-promoting factors in Mexican children and adolescents: challenges and opportunities. Glob Health Action 9:29625CrossRefPubMedGoogle Scholar
  5. 5.
    Murugesan S, Nirmalkar K, García-Espitia M et al (2017) Current insight into the role of gut microbiota in Mexican childhood obesity. SOJ Pharm Pharm Sci 4:1–5CrossRefGoogle Scholar
  6. 6.
    Wild SH, Byrne CD (2006) Risk factors for diabetes and coronary heart disease Dyslipidaemia. BMJ 333:1009–1010CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Freedman DS, Zuguo M, Srinivasan SR et al (2007) Cardiovascular risk factors and excess adiposity among overweight children and adolescents: the Bogalusa heart study. J Pediatr 150(1):12–17CrossRefPubMedGoogle Scholar
  8. 8.
    Bruzzese E, Volpicelli M, Squaglia M et al (2006) Impact of prebiotics on human health. Dig Liver Dis 38(Suppl 2):S283–S287CrossRefPubMedGoogle Scholar
  9. 9.
    Rodriguez JM, Murphy K, Stanton C et al (2015) The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis 26:26050PubMedGoogle Scholar
  10. 10.
    Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65(2):330–339CrossRefPubMedGoogle Scholar
  11. 11.
    Jandhyala SM, Talukdar R, Subramanyam C et al (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95:50–60CrossRefPubMedGoogle Scholar
  13. 13.
    Cummings JH, Pomare EW, Branch WJ et al (1987) short-chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ríos-Covián D, Ruas-Madiedo P, Margolles A et al (2016) Intestinal short-chain fatty acids and their link with diet and human health. Front Microbiol 7:185CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wall R, Ross RP, Shanahan F et al (2009) Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissues. Am J Clin Nutr 89:1393–1401CrossRefPubMedGoogle Scholar
  16. 16.
    Russell SL, Gold MJ, Hartmann M et al (2012) Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 13:440–447CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Smith EA, Macfarlane GT (1997) Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3:327–337CrossRefPubMedGoogle Scholar
  18. 18.
    Sanchez JI, Marzorati M, Grootaert C et al (2009) Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the simulator of human intestinal microbial ecosystem. Microb Biotechnol 2:101–113CrossRefPubMedGoogle Scholar
  19. 19.
    Louis P, Young P, Holtrop G et al (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ Microbiol 12:304–314CrossRefPubMedGoogle Scholar
  20. 20.
    Rey FE, Faith JJ, Bain J et al (2010) Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 285:22082–22090CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Scott KP, Martin JC, Campbell G et al (2006) Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. J Bacteriol 188:4340–4349CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Duncan SH, Barcenilla A, Stewart CS et al (2002) Acetate utilization and butyryl coenzyme a (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 68:5186–5190CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dagher PC, Egnor RW, Taglietta-Kohlbrecteri A et al (1996) Short-chain fatty acids inhibit cAMP-mediated chloride secretion in rat colon. Am J Phys 271:C1853–C1860CrossRefGoogle Scholar
  24. 24.
    Hamer HM, Jonkers D, Venema K et al (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27(2):104–119CrossRefPubMedGoogle Scholar
  25. 25.
    Krautkramer KA, Kreznar JH, Romano KA et al (2016) Diet–microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 64(5):982–992CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Al-Lahham SH, Peppelenbosch MP, Roelofsen H et al (2010) Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta 1:1175–1183CrossRefGoogle Scholar
  27. 27.
    Vogt JA, Wolever TMS (2003) Fecal acetate is inversely related to acetate absorption from the human rectum and distal colon. J Nutr 133:3145–3148CrossRefPubMedGoogle Scholar
  28. 28.
    Frost G, Sleeth ML, Sahuri-Arisoylu M et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kotzampassi K, Giamarellos-Bourboulis EJ, Stavrou G (2014) Obesity as a consequence of gut bacteria and diet interactions. ISRN Obes 2014:651895PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hong YH, Nishimura Y, Hishikawa D et al (2005) Acetate and propionate short-chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146(12):5092–5099CrossRefPubMedGoogle Scholar
  31. 31.
    Scheppach W (1994) Effects of short-chain fatty acids on gut morphology and function. Gut 35(1 Suppl):S35–S38CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    den Besten G, van Eunen K, Groen AK et al (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340CrossRefGoogle Scholar
  33. 33.
    Palmer C, Bik EM, DiGiulio DB et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5(7):e177CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Backhed F, Ley RE, Sonnenburg JL et al (2005) Host–bacterial mutualism in the human intestine. Science 307(5717):1915–1920CrossRefPubMedGoogle Scholar
  35. 35.
    Devaraj S, Hemarajata P, Versalovic J (2013) The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem 59(4):617–628CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ursell LK, Metcalf JL, Parfrey LW et al (2012) Defining the human microbiome. Nutr Rev 70(Suppl 1):S38–S44CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ley RE (2010) Obesity and the human microbiome. Curr Opin Gastroenterol 26(1):5–11CrossRefPubMedGoogle Scholar
  38. 38.
    Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    DiBaise JK, Zhang H, Crowell MD et al (2008) Gut microbiota and its possible relationship with obesity. Mayo Clin Proc 83(4):460–469CrossRefPubMedGoogle Scholar
  40. 40.
    Flint HJ (2011) Obesity and the gut microbiota. J Clin Gastroenterol 45(Suppl):S128–S132CrossRefPubMedGoogle Scholar
  41. 41.
    Ley R, Turnbaugh P, Klein S et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023CrossRefPubMedGoogle Scholar
  42. 42.
    Schwiertz A, Taras D, Schäfer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190–195CrossRefPubMedGoogle Scholar
  43. 43.
    Kalliomäki M, Collado MC, Salminen S et al (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87:534–538CrossRefPubMedGoogle Scholar
  44. 44.
    Bervoets L, Van Hoorenbeeck K, Kortleven I et al (2013) Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathogens 5:10. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Murugesan S, Ulloa-Martínez M, Martínez-Rojano H et al (2015) Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur J Clin Microbiol Infect Dis 34:1337–1346CrossRefPubMedGoogle Scholar
  46. 46.
    Nirmalkar K, Murugesan S, Pizano-Zárate ML et al (2016) Endothelial dysfunction in Mexican obese children, is there a role of the gut microbiota? Obes Control Ther 3(1):1–4Google Scholar
  47. 47.
    Masotti A (2012) Interplays between gut microbiota and gene expression regulation by miRNAs. Front Cell Infect Microbiol 2:137. eCollection 2012CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449(7164):819–826CrossRefPubMedGoogle Scholar
  49. 49.
    Marques FZ, Mackay CR, Kaye DM (2017) Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol Aug 24 [Epub before print].
  50. 50.
    Clark T (2017) G-protein coupled receptors: answers from simulations. Beilstein J Org Chem 13:1071–1078. eCollection 2017CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Leurs R, Bakker RA, Timmerman H, de Esch IJ (2005) The histamine H3 receptor: from gene cloning to H3 receptor drugs. Nat Rev Drug Discov 4(2):107–120CrossRefPubMedGoogle Scholar
  52. 52.
    Hansen AH, Sergeev E, Pandey SK et al (2017) development and characterization of a fluorescent tracer for the free fatty acid receptor 2 (FFA2/GPR43). J Med Chem 60(13):5638–5645CrossRefPubMedGoogle Scholar
  53. 53.
    Won YJ, Lu VB, Puhl HL, Ikeda SR (2013) β-Hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3. J Neurosci 33(49):19314–19325CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Muredda L, Kępczyńska MA, Zaibi MS et al (2017) IL-1β and TNFα inhibit GPR120 (FFAR4) and stimulate GPR84 (EX33) and GPR41 (FFAR3) fatty acid receptor expression in human adipocytes: implications for the anti-inflammatory action of n-3 fatty acids. Arch Physiol Biochem 24:1–12CrossRefGoogle Scholar
  55. 55.
    Tang C, Offermanns S (2017) FFA2 and FFA3 in metabolic regulation. Handb Exp Pharmacol 236:205–220CrossRefPubMedGoogle Scholar
  56. 56.
    Priyadarshini M, Wicksteed B, Schiltz GE et al (2016) SCFA receptors in pancreatic β cells: novel diabetes targets? Trends Endocrinol Metab 27(9):653–664CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chambers ES, Morrison DJ, Frost G (2015) Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc 74(3):328–336CrossRefPubMedGoogle Scholar
  58. 58.
    Kaji I, Akiba Y, Furuyama T et al (2017) Free fatty acid receptor 3 activation suppresses neurogenic motility in rat proximal colon. Neurogastroenterol Motil.
  59. 59.
    Cani PD (2017) Gut cell metabolism shapes the microbiome. Science 357(6351):548–549CrossRefPubMedGoogle Scholar
  60. 60.
    Goffredo M, Mass K, Parks EJ et al (2016) Role of gut microbiota and short-chain fatty acids in modulating energy harvest and fat partitioning in youth. J Clin Endocrinol Metab 101(11):4367–4376CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios Avanzados del IPN, Unidad ZacatencoCiudad de MéxicoMexico
  2. 2.Departamento de FarmacologíaCentro de Investigación y de Estudios Avanzados del IPN, Unidad ZacatencoCiudad de MéxicoMexico
  3. 3.Escuela Nacional de Medicina y Homeopatía del IPNMéxico DFMexico

Personalised recommendations