Advertisement

Molecular xenomonitoring (MX) and transmission assessment survey (TAS) of lymphatic filariasis elimination in two villages, Menoufyia Governorate, Egypt

  • M. A. Moustafa
  • M. M. I. Salamah
  • H. S. Thabet
  • R. A. TawfikEmail author
  • M. M. Mehrez
  • D. M. Hamdy
Original Article

Abstract

Lymphatic filariasis (LF) is focally endemic in Egypt where the female mosquito, Culex pipiens, is responsible for its transmission. The aim of the study was to investigate the impact of implementation of the 13th round of MDA in two Egyptian villages in the Menoufyia Governorate area after failing the transmission assessment survey (TAS) in 2005 using two methods, and to decide whether it is safe to stop MDA in these, as well as in similar implementation units (IUs). To achieve this aim, both the immunochromatographic card test (ICT) and molecular xenomonitoring (MX) techniques were employed. A cross-sectional study was carried out in the villages in 2014 with two sections:
  • Section (1): a school-based survey where all the primary school entrants (6–7) years of age were tested by ICT.

  • Section (2): a mosquito-based survey where a total of 152 mosquito pools collected from Samalay and 167 from Kafr El-Tarainah were tested for the presence of the gDNA of Wuchereria bancrofti microfilaria by real-time PCR assays.

The results revealed that all primary school children in both villages were 100% negative for antigenemia. Also, all mosquito pools were 100% negative for the microfilarial gDNA.

Keywords

Lymphatic Filariasis Mass Drug Administration Primary School Child Culex Pipiens Filarial Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Precious assistance was provided by the Egyptian Ministry of Health and Population. The W. bancrofti amplified DNA whole genome was obtained through the Filariasis Research Reagent Resource Center (FR3), Division of Microbiology and infectious Diseases, NIAID, NIH. Also we would like to thank Ahmed Mohamed Shams El-deen for his participation in the field work of this study.

Compliance with ethical standards

Funding

This work was sponsored by the WHO Regional Office for the Eastern Mediterranean, in collaboration with the Special Program for Research and Training in Tropical Diseases (TDR), Joint EMRO/TDR Small Grants Scheme for implementation research in communicable diseases (grant no. ID SGS 13/58). The sponsor of the study reviewed the study protocol to ensure compliance with good clinical practice standards. Otherwise, the sponsor had no role in the study design, data collection, data analysis, and data interpretation.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study design was reviewed and approved by the Research Ethical Committee (REC), Faculty of Medicine Ain Shams University.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    World Health Organization (2016) Lymphatic filariasis Fact sheet N°102, www.who.int/mediacentre/factsheets/fs102/en/ visited on 1/1/2016.
  2. 2.
    Gad AM, Riad IM, Farid HA (1995) Host-feeding patterns of Culex pipiens and Culex antennatus (Diptera: Culicidae) from a village in Sharqiya Governorate. Egypt J Med Entomol 32:573–577CrossRefPubMedGoogle Scholar
  3. 3.
    World Health Organization (2000) Global programme to eliminate lymphatic filariasis report 2000. WHO, GenevaGoogle Scholar
  4. 4.
    World Health Organization (2005) Monitoring and epidemiological assessment of the programme to eliminate lymphatic filariasis at implementation unit level. WHO/CDS/CPE/CEE, GenevaGoogle Scholar
  5. 5.
    Kyelem D, Biswas G, Bockarie MJ, Bradley MH, EL-Setouhy M, Fisher PU, Henderson RH, Kazura JW, Lammie PJ, Njenga SM, Ottesen EA, Ramaiah KD, Richards FO, Weil GJ, Williams SA (2008) Determinants of success in national programs to eliminate lymphatic filariasis: a perspective identifying essential elements and research needs. Am J Trop Med Hyg 79(4):480–4PubMedPubMedCentralGoogle Scholar
  6. 6.
    Michael E, Malecela-Lazaro MN, Maegga BT, Fischer P, Kazura JW (2006) Mathematical models and lymphatic filariasis control: monitoring and evaluating interventions. Trends Parasitol 22(11):226–233CrossRefPubMedGoogle Scholar
  7. 7.
    Stolk WA, de Vlas SJ, Habbema JD (2006) Advances and challenges in predicting the impact of lymphatic filariasis elimination programmes by mathematical modeling. Filaria J 5(1):1CrossRefGoogle Scholar
  8. 8.
    Burkot TR, Durrheim DN, Melrose WD, Speare R, Ichimori K (2006) The argument for integrating vector control with multiple drug administration campaigns to ensure elimination of lymphatic filariasis. Filarial J 5(1):1CrossRefGoogle Scholar
  9. 9.
    Weil GJ, Kastens W, Susapu M, Leny SJ, Williams SA, King CL, Kazura JW, Bockarie MJ (2008) The impact of repeated rounds of mass drug administration with diethylcarbamazine plus albendazole on bancroftian filariasis in papua new guinea. PLoS Negl Trop Dis 2(12):e344CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    World Health Organization (2003) The global elimination of lymphatic filariasis — the story of Egypt. WHO/CDS/CPE/CEE, Geneva.Google Scholar
  11. 11.
    World Health Organization (2003) Global program to eliminate lymphatic filariasis. Annual report on lymphatic filariasis 2003. World Health Organization, GenevaGoogle Scholar
  12. 12.
    Elaziz KMA, El-Setouhy M, Bradley MH, Ramzy RM, Weil GJ (2013) Knowledge and practice related to compliance with mass drug administration during the Egyptian national filariasis elimination program. AmJTrop Med Hyg 89(2):260–264CrossRefGoogle Scholar
  13. 13.
    World Health Organization (2012) Transmission assessment surveys in the global program to eliminate lymphatic filariasis. WHO/HTM/NTD/PCT/2012.9. WHO, GenevaGoogle Scholar
  14. 14.
    Ramzy RM (2002) Field application of PCR-based assays for monitoring Wuchereria bancrofti infection in Africa. Ann Trop Med Parasitol 96(2):S55–59CrossRefPubMedGoogle Scholar
  15. 15.
    Goodman DS, Orelus JN, Roberts JM, Lammie PJ, Streit T (2003) PCR and mosquito dissection as tools to monitor filarial infection following mass treatment. Filaria J 2(1):1CrossRefGoogle Scholar
  16. 16.
    Gyapong JO, Twum-Danso NA (2006) Editorial: Global elimination of lymphatic filariasis: fact or fantasy? Trop Med Int Health 11(2):125–128CrossRefPubMedGoogle Scholar
  17. 17.
    World Health Organization (2013) Lymphatic filariasis: practical entomology. A handbook for national elimination programs. WHO Global Program to Eliminate Lymphatic Filariasis. WHO, Geneva, pp 1–90Google Scholar
  18. 18.
    Rao RU, Atkinson LJ, Ramzy RM, Helmy H, Farid HA, Bockarie MJ, Sasapu M, Laney SJ, Williams SA, Weil GJ (2006) A real-time PCR-based assay for detection of Wuchereria bancrofti DNA in blood and mosquitoes. Am J Trop Med Hyg 74(5):826–832PubMedPubMedCentralGoogle Scholar
  19. 19.
    Plichart C, Laney SJ, Sechan Y, Davies N, Legrand AM (2007) Erratum: PCR and dissection as tools to monitor filarial infections of Aedes polynesiensis mosquitoes in French Polynesia. Filaria J 6:5CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pedersen EM, Stolk WA, Laney SJ, Michael E (2009) The role of monitoring mosquito infection in the Global Program to Eliminate Lymphatic Filariasis. Trends Parasitol 25(7):319–327CrossRefPubMedGoogle Scholar
  21. 21.
    Chambers EW, McClintock SK, Avery MF, King JD, Bradley MH, Schmaedick MA, Lammie PJ, Burkot TR (2009) Xenomonitoring of W. bancrofti and Dirofilaria immitis infections in mosquitoes from American Samoa: trapping considerations and a comparison of polymerase chain reaction assays with dissection. Am J Trop Med Hyg 80(5):774–781PubMedGoogle Scholar
  22. 22.
    Moustafa MA, Thabet HS, Saad GA, El-Setouhy M, Mehrez M, Hamdy DM (2014) Surveillance of lymphatic filariasis 5 years after stopping mass drug administration in Menoufiya Governorate. Egypt EMHJ 20(5):295–299Google Scholar
  23. 23.
    Harbach RE (1985) Pictorial keys to the genera of mosquitoes, subgenera of Culex and the species of Culex (Culex) occurring in southwestern Asia and Egypt, with a note on the subgeneric placement of Culex deserticola (Diptera: Culicidae). Walter Reed Army Inst of Research, Washington DCGoogle Scholar
  24. 24.
    Witt C, Ottesen EA (2001) Lymphatic filariasis: an infection of childhood. Trop Med Int Health 6(8):582–606CrossRefPubMedGoogle Scholar
  25. 25.
    Rajendran R, Sunish IP, Mani TR, Munirathinam A, Satyanarayana K (2002) Targeting of children in filariasis mass drug administration. Lancet 360(9343):1430CrossRefPubMedGoogle Scholar
  26. 26.
    Southgate BA (1984) Recent advances in the epidemiology and control of filarial infections including epidemiological aspects of transmission. Trans R Soc Trop Med Hyg 78(suppl):19–28CrossRefPubMedGoogle Scholar
  27. 27.
    Ramzy RM, El-setouhy M, Helmy H, Ahmed ES, ElAziz KM, Farid HA, Shannon WD, Weil GJ (2006) Effect of yearly mass drug administration with diethylcarbamazine and albendazole on bancroftian filariasis in Egypt ; a comprehensive assessment. Lancet 367(9515):992–997CrossRefPubMedGoogle Scholar
  28. 28.
    Helmy H, Weil GJ, Ellethy AS, Ahmed ES, Setouhy ME, Ramzy RM (2006) Bancroftian filariasis: effect of repeated treatment with diethylcarbamazine and albendazole on microfilaraemia, antigenaemia and antifilarial antibodies. Trans R Soc Trop Med Hyg 100(7):656–62CrossRefPubMedGoogle Scholar
  29. 29.
    Gass K, Madsen VE, Boakye D, Bradley M, Fischer P, Gyapong J, Itoh M, Ituaso-Conway N, Joseph H, Kyelem D, Laney SJ (2012) A multicenter evaluation of diagnostic tools to define endpoints for programs to eliminate bancroftian filariasis. PLoS Negl Trop Dis 6(1):e1479CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chesnais CB, Missamou F, Pion S, Bopda J, Louya F, Majewski A, Weil G, Boussinesq M (2013) Semi-quantitative scoring of an immunochromatographic test for circulating filarial antigen. Am J Trop Med Hyg 89(5):916–918CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rao R, Nagodavithana K, Samarasekera S, Wijegunawardana A, Premakumara W, Perera S, Settinayake S, Phillip Miller J, Weil J (2014) A comprehensive assessment of lymphatic filariasis in Sri Lanka six years after cessation of mass drug administration. PLoS Negl Trop Dis 8(11):e3281, Erratum in: PLoS Negl Trop Dis. 2014 December; 8(12): e3428CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Medeiros Z, Alves A, Brito JA, Borba L, Santos Z, Costa JP, Do Espírito Santo ME, Netto MJ (2006) The present situation regarding lymphatic filariasis in Cabo de Santo Agostinho, Pernambuco, Northeast Brazil. Revista Instituto Medicina Tropicalde São Paulo 48(5):263–267CrossRefGoogle Scholar
  33. 33.
    Leite A, de Lima A, Leite B, Santos R, Gonçalves J, Rocha E, Fontes G (2010) Assessment of family and neighbors of an individual infected with W. bancrofti from a non-endemic area in the city of Maceió, Brazil. Braz J Infect Dis 14(2):125–128CrossRefPubMedGoogle Scholar
  34. 34.
    Fontes G, Leite A, de Lima A, Freitas H, Ehrenberg J, de Rocha E (2012) Lymphatic filariasis in Brazil: epidemiological situation and outlook for elimination. Parasit Vectors 5(1):1CrossRefGoogle Scholar
  35. 35.
    Kasai S, Komagata O, Tomita T, Sawabe K, Tsuda Y, Kurahashi H, Ishikawa T, Motoki M, Takahashi T, Tanikawa T, Yoshida M, Shinjo G, Hashimoto T, Higa Y, Kobayashi M (2008) PCR-based identification of Culex pipiens complex collected in Japan. Jpn J Infect Dis 61(3):184–191PubMedGoogle Scholar
  36. 36.
    Bourguet D, Fonseca D, Vouch G, Dubois MP, Chandre F, Severini C, Raymond M (1998) The acetylcholinesterase gene ace: a diagnostic marker for the pipiens and quinquefasciatus forms of the Culex pipiens complex. J Am Mosq Control Assoc 4(4):390–396Google Scholar
  37. 37.
    Farid HA, Morsy ZS, Helmy H, Ramzy RM, El Setouhy M, Weil GJ (2007) A critical appraisal of molecular xenomonitoring as a tool for assessing progress toward elimination of lymphatic filariasis. Am J Trop Med Hyg 77(4):593–600PubMedPubMedCentralGoogle Scholar
  38. 38.
    Irish SR, Moore SJ, Derua YA, Bruce J, Cameron MM (2013) Evaluation of a nonanal-trimethylamine lure for collection of Culex quinquefasciatus (Diptera: Culicidae) in gravid traps. J Med Entomol 50(3):619–623CrossRefPubMedGoogle Scholar
  39. 39.
    Irish SR, Moore SJ, Derua YA, Bruce J, Cameron MM (2013) Evaluation of gravid traps for the collection of Culex quinquefasciatus, a vector of lymphatic filariasis in Tanzania. Trans R Soc Trop Med Hyg 107(1):15–22CrossRefPubMedGoogle Scholar
  40. 40.
    Gad AM, Feinsod FM, Soliman BA, Nelson GO, Gibbs PH, Shoukry A (1994) Exposure variables in bancroftian filariasis in the Nile Delta. J Egypt Soc Parasitol 24(2):439–455PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • M. A. Moustafa
    • 1
  • M. M. I. Salamah
    • 1
  • H. S. Thabet
    • 1
  • R. A. Tawfik
    • 1
    Email author
  • M. M. Mehrez
    • 2
  • D. M. Hamdy
    • 1
  1. 1.Department of Parasitology, Faculty of MedicineAin Shams UniversityCairoEgypt
  2. 2.General Department for MalariaFilariasis & Leishmaniasis Control, Endemic Diseases Control Sector, Ministry of Health and PopulationCairoEgypt

Personalised recommendations