Skip to main content

Cost-effectiveness of a new system in ruling out negative urine cultures on the day of administration


Urine samples account for a significant part of the workload in clinical microbiology laboratories. However, the culture process is time-consuming and a large proportion is reported as negative. To reduce unnecessary culture procedures and speed up the reporting of negative results, a reliable screening method is needed. For this purpose, urine samples submitted to our clinical microbiology laboratory were simultaneously screened by a flow cytometry method (Sysmex UF-1000i, Japan). During screening, the evaluation of various combinations of leucocytes and bacteria cut-offs demonstrated that cut-offs of 30 and 50/μL, respectively, were the best threshold values to reach a 100% negative predictive value (NPV) with a culture reduction rate of 44.8% in adults and 61.9% in children between the ages of 6 and 17 years. With the culture reduction rates mentioned above, the screening method has provided at least 24% savings in expenditures of the routine clinical microbiology laboratory. Since we did not reach such an NPV with any combinations of screening parameters in children younger than 5 years of age, we recommend cultivation of all urine samples in those patients without a screening step. In conclusion, Sysmex UF-1000i as a screening method was capable of improving the efficiency of the routine microbiology laboratory by providing negative results in a few minutes in children greater than 6 years of age and in adults.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Foxman B (2014) Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 28:1–13

    Article  PubMed  Google Scholar 

  2. 2.

    Tille PM (2014) Infections of the urinary tract. In: Tille PM (ed) Bailey & Scott’s diagnostic microbiology, 13th edn. Elsevier, St. Louis, pp 919–930

    Google Scholar 

  3. 3.

    Kellogg JA, Manzella JP, Shaffer SN, Schwartz BB (1987) Clinical relevance of culture versus screens for the detection of microbial pathogens in urine specimens. Am J Med 83:739–745

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Okada H, Sakai Y, Miyazaki S, Arakawa S, Hamaguchi Y, Kamidono S (2000) Detection of significant bacteriuria by automated urinalysis using flow cytometry. J Clin Microbiol 38(8):2870–2872

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Pezzlo M (1988) Detection of urinary tract infections by rapid methods. Clin Microbiol Rev 1(3):268–280

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ilki A, Bekdemir P, Ulger N, Soyletir G (2010) Rapid reporting of urine culture results: impact of the uro-quick screening system. New Microbiol 33(2):147–153

    PubMed  Google Scholar 

  7. 7.

    Nicolai E, Garau S, Favalli C, D’Agostini C, Gratton E, Motolese G, Rosato N (2014) Evaluation of Biesse Bioscreen as a new methodology for bacteriuria screening. New Microbiol 37(4):495–501

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Spezzotti G (2014) Technical notes on the correct configuration of the Alfred 60/AST device for the detection of urinary tract infections. J Clin Microbiol 52(5):1805–1806. doi:10.1128/JCM.03241-13

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Okada H, Shirakawa T, Gotoh A, Kamiyama Y, Muto S, Ide H, Hamaguchi Y, Horie S (2006) Enumeration of bacterial cell numbers and detection of significant bacteriuria by use of a new flow cytometry-based device. J Clin Microbiol 44(10):3596–3599

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Tessari A, Osti N, Scarin M (2015) Screening of presumptive urinary tract infections by the automated urine sediment analyser sediMAX. Clin Chem Lab Med 53(Suppl 2):s1503–s1508

    CAS  PubMed  Google Scholar 

  11. 11.

    Gur’ev AS, Volkov AY, Dolgushin II, Pospelova AV, Rastopov SF, Savochkina AY, Sergienko VI (2015) Coherent fluctuation nephelometry: a rapid method for urine screening for bacterial contamination. Bull Exp Biol Med 159(1):107–110. doi:10.1007/s10517-015-2902-0

    Article  PubMed  Google Scholar 

  12. 12.

    Gutiérrez-Fernández J, Lara A, Bautista MF, de Dios Luna J, Polo P, Miranda C, Navarro JM (2012) Performance of the Sysmex UF1000i system in screening for significant bacteriuria before quantitative culture of aerobic/facultative fast-growth bacteria in a reference hospital. J Appl Microbiol 113(3):609–614. doi:10.1111/j.1365-2672.2012.05369.x

    Article  PubMed  Google Scholar 

  13. 13.

    Pieretti B, Brunati P, Pini B, Colzani C, Congedo P, Rocchi M, Terramocci R (2010) Diagnosis of bacteriuria and leukocyturia by automated flow cytometry compared with urine culture. J Clin Microbiol 48(11):3990–3996. doi:10.1128/JCM.00975-10

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    De Rosa R, Grosso S, Bruschetta G, Avolio M, Stano P, Modolo ML, Camporese A (2010) Evaluation of the Sysmex UF1000i flow cytometer for ruling out bacterial urinary tract infection. Clin Chim Acta 411(15–16):1137–1142. doi:10.1016/j.cca.2010.03.027

    Article  PubMed  Google Scholar 

  15. 15.

    Manoni F, Fornasiero L, Ercolin M, Tinello A, Ferrian M, Hoffer P, Valverde S, Gessoni G (2009) Cutoff values for bacteria and leukocytes for urine flow cytometer Sysmex UF-1000i in urinary tract infections. Diagn Microbiol Infect Dis 65(2):103–107. doi:10.1016/j.diagmicrobio.2009.06.003

    Article  PubMed  Google Scholar 

  16. 16.

    Kadkhoda K, Manickam K, Degagne P, Sokolowski P, Pang P, Kontzie N, Alfa M (2011) UF-1000i flow cytometry is an effective screening method for urine specimens. Diagn Microbiol Infect Dis 69(2):130–136. doi:10.1016/j.diagmicrobio.2010.09.013

    Article  PubMed  Google Scholar 

  17. 17.

    Broeren MA, Bahçeci S, Vader HL, Arents NL (2011) Screening for urinary tract infection with the Sysmex UF-1000i urine flow cytometer. J Clin Microbiol 49(3):1025–1029. doi:10.1128/JCM.01669-10

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    van der Zwet WC, Hessels J, Canbolat F, Deckers MM (2010) Evaluation of the Sysmex UF-1000i® urine flow cytometer in the diagnostic work-up of suspected urinary tract infection in a Dutch general hospital. Clin Chem Lab Med 48(12):1765–1771. doi:10.1515/CCLM.2010.342

    PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Ilki.

Ethics declarations


This study was partly supported by an in-kind grant from Sysmex Corp., Turkey.

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

This article does not contain any studies with any human participants or animals performed by any of the authors.

Informed consent

This study did not involve human subjects or samples; therefore, no informed consent is required.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ilki, A., Ayas, R., Ozsoy, S. et al. Cost-effectiveness of a new system in ruling out negative urine cultures on the day of administration. Eur J Clin Microbiol Infect Dis 36, 1119–1123 (2017).

Download citation


  • Urine Sample
  • Negative Predictive Value
  • Microbiology Laboratory
  • Receiver Operating Curve
  • Clinical Microbiology Laboratory