Skip to main content

Remodeling of the gut microbiota and structural shifts in Preeclampsia patients in South China

Abstract

Preeclampsia (PE) is one of the pregnancy metabolic diseases. Since Gut microbiota play important roles in the hosts’ metabolism, it is necessary to investigate the gut microbiota in PE patients, so that some intestinal dysbiosis might be detected as a biomarker for PE early diagnosis or as a target for intervention. One hundred subjects were categorized into four groups: 26 PE patients in late pregnancy, healthy individuals in early, middle, and late pregnancy (26/24/24 women). Gut microbiota were analyzed by sequencing the V4 region of the 16S rDNA gene using Illuminal MiSeq. Data were analyzed by multivariate statistics. Bacteroidetes was the dominant bacterium (47.57–52.35%) in the pregnant women in South China. Tenericutes increased while Verrucomicrobia almost disappeared in late pregnancy. In the PE patients, there was an overall increase in pathogenic bacteria, Clostridium perfringens (p = 0.03) and Bulleidia moorei (p = 0.00) but a reduction in probiotic bacteria Coprococcus catus (p = 0.03). Our research suggests that there is a significant structural shift of the gut microbiota in PE patients, which might be associated with the occurrence and development of the disease. However, further studies are required to understand the underlying mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Robergo S, Villa P, Nicolaides K et al (2012) Early administration of low dose aspirin for the prevention of preterm and term preeclampsia: a systematic review and meta- analysis. Fetal Diagn Ther 31:141–146

    Article  Google Scholar 

  2. Lima VJ, Andrade CR, Ruschi GE et al (2011) Serum lipid levels in pregnancies complicated by preeclampsia. Sao Paulo Med J 129(2):73–76

    Article  PubMed  Google Scholar 

  3. Valdés E, Sepúlveda-Martínez A, Manukián B et al (2014) Assessment of pregestational insulin resistance as a risk factor of preeclampsia. Gynecol Obstet Investig 77:111–116

    Article  Google Scholar 

  4. Bartha JL, Gonzalez-Bogatto F, Fernandez-Macias R et al (2008) Metabolic syndrome in normal and complicated pregnancies. Eur J Obstet Gynecol Reprod Biol 137(2):178–184

    CAS  Article  PubMed  Google Scholar 

  5. Rodie VA, Freeman DJ, Sattar N et al (2004) Pre-eclampsia and cardiovascular disease: metabolic syndrome of pregnancy? Atherosclerosis 175(2):189–202

    CAS  Article  PubMed  Google Scholar 

  6. Zhao L (2013) The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol 11(9):639–647

    CAS  Article  PubMed  Google Scholar 

  7. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nagata K, Suzuki H, Sakaguchi S et al (2007) Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J Toxicol Sci 32(5):453–468

    CAS  Article  PubMed  Google Scholar 

  9. Liévin V, Peiffer I, Hudault S et al (2000) Strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 47(5):646–652

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moran C, Sheehan D, Shanahan F (2015) The small bowel microbiota. Curr Opin Gastroenterol 31(2):130–136

    CAS  Article  PubMed  Google Scholar 

  11. Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Bohr UR, Glasbrenner B, Primus A et al (2004) Identification of enterohepatic Helicobacter species in patients suffering from inflammatory bowel disease. J Clin Microbiol 42(6):2766–2768

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Konopka A (2009) What is microbial community ecology? ISME J 3(11):1223–1230

    Article  PubMed  Google Scholar 

  14. Ley RE, Peterson DA, Gordon JI et al (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848

    CAS  Article  PubMed  Google Scholar 

  15. Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  PubMed  PubMed Central  Google Scholar 

  16. Omry K, Julia K, Goodrich et al (2012) Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 3:470–480

    Google Scholar 

  17. Van Damme-Jongsten M, Haagsma J, Notermans S (1990) Testing strains of Clostridium perfringens type A isolated from diarrhoeic piglets for the presence of the enterotoxin gene. Vet Rec 126(8):191–192

    PubMed  Google Scholar 

  18. Baldwin L, Henderson A, Wright M et al (1993) Spontaneous Clostridium perfringens lung abscess unresponsive to penicillin. Anaesth Intensive Care 21(1):117–119

    CAS  PubMed  Google Scholar 

  19. Unterer S, Busch K, Leipig M et al (2014) Endoscopically visualized lesions, histologic findings, and bacterial invasion in the gastrointestinal mucosa of dogs with acute hemorrhagic diarrhea syndrome. J Vet Intern Med 28(1):52–58

    CAS  Article  PubMed  Google Scholar 

  20. Sakurai J, Oshita Y, Fujii Y (1985) Effect of Clostridium perfringens alpha toxin on the cardiovascular system of rats. Toxicon 23(6):903–912

    CAS  PubMed  Google Scholar 

  21. Sakurai J, Fujii Y, Dezaki K (1984) Effect of Clostridium perfringens beta toxin on blood pressure of rats. Microbiol Immunol 28(1):23–31

    CAS  Article  PubMed  Google Scholar 

  22. Sakurai J, Fujii Y, Matsuura M (1981) Pharmacological effect of beta toxin of Clostridium perfringens type C on rats. Microbiol Immunol 25(5):423–432

    CAS  Article  PubMed  Google Scholar 

  23. Soler-Jover A, Blasi J, Gómez de Aranda I (2004) Effect of epsilon toxin-GFP on MDCK cells and renal tubules in vivo. J Histochem Cytochem 52(7):931–942

    CAS  Article  PubMed  Google Scholar 

  24. Nagahama M, Takahashi T, Sakurai J (1990) Effect of prior treatment with Clostridium perfringens epsilon toxin inactivated by various agents on lethal, pressor and contractile activities of the toxin. FEMS Microbiol Lett 60(1–2):59–62

    CAS  Article  PubMed  Google Scholar 

  25. Simon TG, Bradley J (2014) Jones A. Massive intravascular hemolysis from Clostridium perfringens septicemia: a review. J Intensive Care Med 29(6):327–333

    Article  PubMed  Google Scholar 

  26. Jemni L, Chatti N, Chakroun M (1988) Clostridium perfringens septicemia. Rev Fr Gynecol Obstet 83(6):407–409

    CAS  PubMed  Google Scholar 

  27. Uzal FA, Freedman JC, Shrestha A (2014) Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 9(3):361–377

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Downes J, Olsvik B, Hiom SJ et al (2000) Bulleidia extructa gen. nov., sp. nov., isolated from the oral cavity. Int J Syst Evol Microbiol 50(3):979–983

    CAS  Article  PubMed  Google Scholar 

  29. Kloesel B, Beliveau M, Patel R et al (2013) Bulleidia extructa periprosthetic hip joint infection, United States. Emerg Infect Dis 19(7):1170–1171

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reichardt N, Duncan SH, Young P et al (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8(6):1323–1335

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

    CAS  Article  PubMed  Google Scholar 

  32. Schwiertz A, Taras D, Schäfer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 18(1):190–195

    Article  Google Scholar 

  33. Larsen N, Vogensen FK, van den Berg FW et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2), e9085

    Article  PubMed  PubMed Central  Google Scholar 

  34. Preidis GA, Ajami NJ, Wong MC et al (2015) Composition and function of the undernourished neonatal mouse intestinal microbiome. J Nutr Biochem 18(5):190–195

    Google Scholar 

  35. Niu Q, Li P, Hao S et al (2015) Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci Rep 21(5):9938

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Li.

Ethics declarations

Funding

This study was funded by internal funding of the First Affiliated Hospital of Jinan University.

Conflict of interest

The authors declared no conflict of interest.

Ethical approval

The internal ethical review panel of the First Affiliated Hospital of Jinan University approved this study.

Informed consent

All subjects involved in this study gave their informed consent.

Additional information

J. Liu and H. Yang contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yang, H., Yin, Z. et al. Remodeling of the gut microbiota and structural shifts in Preeclampsia patients in South China. Eur J Clin Microbiol Infect Dis 36, 713–719 (2017). https://doi.org/10.1007/s10096-016-2853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2853-z

Keywords

  • Preeclampsia
  • Propionic Acid
  • Canonical Correlation Analysis
  • Increase Blood Pressure
  • Late Pregnancy