Skip to main content

Advertisement

Log in

Optimising gut colonisation resistance against Clostridium difficile infection

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Clostridium difficile is the dominant cause of pseudomembranous colitis in nosocomial environments. C. difficile infection (CDI) generally affects elderly (≥65 years of age) hospital inpatients who have received broad-spectrum antimicrobial treatment. CDI has a 30 % risk of re-infection and a subsequent 60 % risk of relapse thereafter, leading to a high economic burden of over 7 billion pounds sterling and over 900,000 cases in the USA and Europe per annum. With the long-term consequences of faecal transplantation currently unknown, and limited spectrum of effective antibiotics, there is an urgent requirement for alternative means of preventing and treating CDI in high-risk individuals. Metagenomics has recently improved our understanding of the colonisation resistance barrier and how this could be optimised. pH, oxidation–reduction potentials and short-chain fatty acids have been suggested to inhibit C. difficile growth and toxin production in in vitro and in vivo studies. This review aims to pull together the evidence in support of a colonisation resistance barrier against CDI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Carroll KC, Bartlett JG (2011) Biology of Clostridium difficile: implications for epidemiology and diagnosis. Annu Rev Microbiol 65:501–521

    Article  CAS  PubMed  Google Scholar 

  2. Köpke M, Straub M, Dürre P (2013) Clostridium difficile is an autotrophic bacterial pathogen. PLoS One 8(4):e62157

    Article  PubMed Central  PubMed  Google Scholar 

  3. Voth DE, Ballard JD (2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18(2):247–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Macleod-Glover N, Sadowski C (2010) Efficacy of cleaning products for C. difficile: environmental strategies to reduce the spread of Clostridium difficile-associated diarrhea in geriatric rehabilitation. Can Fam Physician 56:417–423

    PubMed Central  PubMed  Google Scholar 

  5. Borriello SP (1998) Pathogenesis of Clostridium difficile infection. J Antimicrob Chemother 41(Suppl C):13–19

    Article  CAS  PubMed  Google Scholar 

  6. Kachrimanidou M, Malisiovas N (2011) Clostridium difficile infection: a comprehensive review. Crit Rev Microbiol 37(3):178–187

    Article  CAS  PubMed  Google Scholar 

  7. Rolfe RD (1984) Role of volatile fatty acids in colonization resistance to Clostridium difficile. Infect Immun 45:185–191

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Seddon SV, Hemingway I, Borriello SP (1990) Hydrolytic enzyme production by Clostridium difficile and its relationship to toxin production and virulence in the hamster model. J Med Microbiol 31:169–174

    Article  CAS  PubMed  Google Scholar 

  9. Reineke J, Tenzer S, Rupnik M, Koschinski A, Hasselmayer O, Schrattenholz A, Schild H, von Eichel-Streiber C (2007) Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446:415–419

    Article  CAS  PubMed  Google Scholar 

  10. Carter GP, Lyras D, Allen DL, Mackin KE, Howarth PM, O’Connor JR, Rood JI (2007) Binary toxin production in Clostridium difficile is regulated by CdtR, a LytTR family response regulator. J Bacteriol 189:7290–7301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Summit Therapeutics plc (2014) C. difficile infection. Available online at: http://www.summitplc.com/programmes/c-difficile-infections/. Accessed 2 February 2015

  12. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, Pepin J, Wilcox MH; Society for Healthcare Epidemiology of America; Infectious Diseases Society of America (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455

    Article  PubMed  Google Scholar 

  13. Pépin J, Routhier S, Gagnon S, Brazeau I (2006) Management and outcomes of a first recurrence of Clostridium difficile-associated disease in Quebec, Canada. Clin Infect Dis 42:758–764

    Article  PubMed  Google Scholar 

  14. Goorhuis A, Van der Kooi T, Vaessen N, Dekker FW, Van den Berg R, Harmanus C, van den Hof S, Notermans DW, Kuijper EJ (2007) Spread and epidemiology of Clostridium difficile polymerase chain reaction ribotype 027/toxinotype III in The Netherlands. Clin Infect Dis 45:695–703

    Article  CAS  PubMed  Google Scholar 

  15. Hensgens MPM, Goorhuis A, van Kinschot CMJ, Crobach MJT, Harmanus C, Kuijper EJ (2011) Clostridium difficile infection in an endemic setting in the Netherlands. Eur J Clin Microbiol Infect Dis 30:587–593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Bauer MP, Notermans DW, van Benthem BHB, Brazier JS, Wilcox MH, Rupnik M, Monnet DL, van Dissel JT, Kuijper EJ; ECDIS Study Group (2011) Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377:63–73

    Article  PubMed  Google Scholar 

  17. Kutty PK, Woods CW, Sena AC, Benoit SR, Naggie S, Frederick J, Evans S, Engel J, McDonald LC (2010) Risk factors for and estimated incidence of community-associated Clostridium difficile infection, North Carolina, USA. Emerg Infect Dis 16(2):197–204

    Article  PubMed  Google Scholar 

  18. Dallal RM, Harbrecht BG, Boujoukas AJ, Sirio CA, Farkas LM, Lee KK, Simmons RL (2002) Fulminant Clostridium difficile: an underappreciated and increasing cause of death and complications. Ann Surg 235(3):363–372

    Article  PubMed Central  PubMed  Google Scholar 

  19. Aguayo C, Flores R, Lévesque S, Araya P, Ulloa S, Lagos J, Hormazabal JC, Tognarelli J, Ibáñez D, Pidal P, Duery O, Olivares B, Fernández J (2015) Rapid spread of Clostridium difficile NAP1/027/ST1 in Chile confirms the emergence of the epidemic strain in Latin America. Epidemiol Infect 17:1–5

    Google Scholar 

  20. Huber CA, Hall L, Foster NF, Gray M, Allen M, Richardson LJ, Robson J, Vohra R, Schlebusch S, George N, Nimmo GR, Riley TV, Paterson DL (2014) Surveillance snapshot of Clostridium difficile infection in hospitals across Queensland detects binary toxin producing ribotype UK 244. Commun Dis Intell Q Rep 38(4):E279–E284

    PubMed  Google Scholar 

  21. Wilcox MH, Shetty N, Fawley WN, Shemko M, Coen P, Birtles A, Cairns M, Curran MD, Dodgson KJ, Green SM, Hardy KJ, Hawkey PM, Magee JG, Sails AD, Wren MWD (2012) Changing epidemiology of Clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clin Infect Dis 55(8):1056–1063

    Article  CAS  PubMed  Google Scholar 

  22. Smith A (2005) Outbreak of Clostridium difficile infection in an English hospital linked to hypertoxin-producing strains in Canada and the US. Euro Surveill 10:E050630.2

    PubMed  Google Scholar 

  23. Davies KA, Longshaw CM, Davis GL, Bouza E, Barbut F, Barna Z, Delmée M, Fitzpatrick F, Ivanova K, Kuijper E, Macovei IS, Mentula S, Mastrantonio P, von Müller L, Oleastro M, Petinaki E, Pituch H, Norén T, Nováková E, Nyč O, Rupnik M, Schmid D, Wilcox MH (2014) Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect Dis 14:1208–1219

    Article  PubMed  Google Scholar 

  24. Planche TD, Davies KA, Coen PG, Finney JM, Monahan IM, Morris KA, O’Connor L, Oakley SJ, Pope CF, Wren MW, Shetty NP, Crook DW, Wilcox MH (2013) Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet 13:936–945

    Article  PubMed Central  PubMed  Google Scholar 

  25. Curry SR, Muto CA, Schlackman JL, Pasculle AW, Shutt KA, Marsh JW, Harrison LH (2013) Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clin Infect Dis 57(8):1094–1102

    Article  PubMed Central  PubMed  Google Scholar 

  26. Mullane K (2014) Fidaxomicin in Clostridium difficile infection: latest evidence and clinical guidance. Ther Adv Chron Dis 5(2):69–84

    Article  Google Scholar 

  27. Goldstein EJ, Citron DM, Tyrrell KL, Merriam CV (2013) Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 gram-positive and gram-negative aerobic and anaerobic intestinal flora isolates. Antimicrob Agents Chemother 57(10):4872–4876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Louie TJ, Emery J, Krulicki W, Byrne B, Mah M (2009) OPT-80 eliminates Clostridium difficile and is sparing of Bacteroides species during treatment of C. difficile infection. Antimicrob Agents Chemother 53:261–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Naaber P, Smidt I, Štšepetova J, Brilene T, Annuk H, Mikelsaar M (2004) Inhibition of Clostridium difficile strains by intestinal Lactobacillus species. J Med Microbiol 53:551–554

    Article  PubMed  Google Scholar 

  30. Cammarota G, Ianiro G, Bibbò S, Gasbarrini A (2014) Gut microbiota modulation: probiotics, antibiotics or fecal microbiota transplantation? Intern Emerg Med 9:365–373

    Article  PubMed  Google Scholar 

  31. Fuentes S, van Nood E, Tims S, Heikamp-de Jong I, ter Braak CJF, Keller JJ, Zoetendal EG, de Vos WM (2014) Reset of a critically disturbed microbial ecosystem: faecal transplant in recurrent Clostridium difficile infection. ISME J 8:1621–1623

    Article  PubMed  Google Scholar 

  32. Petrof EO, Claud EC, Gloor GB, Allen-Vercoe E (2013) Microbial ecosystems therapeutics: a new paradigm in medicine? Benef Microbes 4(1):53–65

  33. Grönlund MM, Lehtonen OP, Eerola E, Kero P (1999) Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 28(1):19–25

    Article  PubMed  Google Scholar 

  34. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  PubMed Central  PubMed  Google Scholar 

  35. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. doi:10.1038/nature08821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Hill MJ, Drasar BS (1975) The normal colonic bacterial flora. Gut 16:318–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Espey MG (2013) Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic Biol Med 55:130–140

    Article  CAS  PubMed  Google Scholar 

  38. Circu ML, Aw TY (2012) Intestinal redox biology and oxidative stress. Semin Cell Dev Biol 23:729–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Donskey CJ (2004) The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis 39:219–226

    Article  PubMed  Google Scholar 

  40. Sullivan Å, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1:101–114

    Article  CAS  PubMed  Google Scholar 

  41. Bourke E, Milne MD, Stokes GS (1966) Caecal pH and ammonia in experimental uraemia. Gut 7:558–561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Orr WC, Chen CL (2002) Aging and neural control of the GI tract: IV. Clinical and physiological aspects of gastrointestinal motility and aging. Am J Physiol Gastrointest Liver Physiol 283:G1226–G1231

    Article  CAS  PubMed  Google Scholar 

  43. May T, Mackie RI, Fahey GC Jr, Cremin JC, Garleb KA (1994) Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scand J Gastroenterol 29:916–922

    Article  CAS  PubMed  Google Scholar 

  44. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547

    Article  CAS  PubMed  Google Scholar 

  45. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17:1519–1528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Theriot CM, Young VB (2014) Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection. Gut Microbes 5(1):86–95

    Article  PubMed Central  PubMed  Google Scholar 

  47. Onderdonk AB, Lowe BR, Bartlett JG (1979) Effect of environmental stress on Clostridium difficile toxin levels during continuous cultivation. Appl Environ Microbiol 38(4):637–641

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Ghosh S, Dai C, Brown K, Rajendiran E, Makarenko S, Baker J, Ma C, Halder S, Montero M, Ionescu VA, Klegeris A, Vallance BA, Gibson DL (2011) Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am J Physiol Gastrointest Liver Physiol 301(1):G39–G49

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Tedford.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuille, S., Mackay, W.G., Morrison, D.J. et al. Optimising gut colonisation resistance against Clostridium difficile infection. Eur J Clin Microbiol Infect Dis 34, 2161–2166 (2015). https://doi.org/10.1007/s10096-015-2479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2479-6

Keywords

Navigation