Skip to main content

Advertisement

Log in

The influence of different peritoneal dialysis fluids on the in vitro activity of ampicillin, daptomycin, and linezolid against Enterococcus faecalis

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Intraperitoneal administration of antibiotics is recommended for the treatment of peritoneal dialysis-related peritonitis. However, little data are available on a possible interference between peritoneal dialysis fluids and the activity of antimicrobial agents. Thus, the present in vitro study set out to investigate the influence of different peritoneal dialysis fluids on the antimicrobial activity of ampicillin, linezolid, and daptomycin against Enterococcus faecalis. Time–kill curves in four different peritoneal dialysis fluids were performed over 24 h with four different concentrations (1 × MIC, 4 × MIC, 8 × MIC, 30 × MIC) of each antibiotic evaluated. Cation-adjusted Mueller–Hinton broth was used as the comparator solution. All four peritoneal dialysis fluids evaluated had a bacteriostatic effect on the growth of Enterococcus faecalis. Compared to the cation-adjusted Mueller–Hinton broth comparator solution, the antimicrobial activity of all antibiotics tested was reduced. For ampicillin and linezolid, no activity was found in any peritoneal dialysis fluid, regardless of the concentration. Daptomycin demonstrated dose-dependent activity in all peritoneal dialysis fluids. Bactericidal activity was observed at the highest concentrations evaluated in Dianeal® PDG4 and Extraneal®, but not in concentrations lower than 30 × MIC and not in Nutrineal® PD4 and Physioneal® 40. The antimicrobial activity of ampicillin and linezolid is limited in peritoneal dialysis fluids in vitro. Daptomycin is highly effective in peritoneal dialysis fluids and might, thus, serve as an important treatment option in peritoneal dialysis-related peritonitis. Further studies are needed to evaluate the clinical impact of the present findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jain AK, Blake P, Cordy P, Garg AX (2012) Global trends in rates of peritoneal dialysis. J Am Soc Nephrol 23:533–544

    Article  PubMed Central  PubMed  Google Scholar 

  2. Li PK-T, Szeto CC, Piraino B, Bernardini J, Figueiredo AE, Gupta A et al (2010) Peritoneal dialysis-related infections recommendations: 2010 update. Perit Dial Int 30:393–423

    Article  PubMed  Google Scholar 

  3. Piraino B, Bernardini J, Brown E, Figueiredo A, Johnson DW, Lye W-C et al (2011) ISPD position statement on reducing the risks of peritoneal dialysis-related infections. Perit Dial Int 31:614–630

    Article  CAS  PubMed  Google Scholar 

  4. Salzer W (2005) Antimicrobial-resistant gram-positive bacteria in PD peritonitis and the newer antibiotics used to treat them. Perit Dial Int 25:313–319

    CAS  PubMed  Google Scholar 

  5. Gorman T, Eisele G, Bailie GR (1995) Intraperitoneal antibiotics effectively treat non-dialysis-related infections. Perit Dial Int 15:283–284

    CAS  PubMed  Google Scholar 

  6. van Esch S, Krediet RT, Struijk DG (2014) 32 years’ experience of peritoneal dialysis-related peritonitis in a university hospital. Perit Dial Int 34:162–170

    Article  PubMed Central  PubMed  Google Scholar 

  7. Huang S-T, Chuang Y-W, Cheng C-H, Wu M-J, Chen C-H, Yu T-M et al (2011) Evolution of microbiological trends and treatment outcomes in peritoneal dialysis-related peritonitis. Clin Nephrol 75:416–425

    Article  PubMed  Google Scholar 

  8. Cho Y, Johnson DW (2014) Peritoneal dialysis-related peritonitis: towards improving evidence, practices, and outcomes. Am J Kidney Dis 64:278–289

    Article  PubMed  Google Scholar 

  9. Edey M, Hawley CM, McDonald SP, Brown FG, Rosman JB, Wiggins KJ et al (2010) Enterococcal peritonitis in Australian peritoneal dialysis patients: predictors, treatment and outcomes in 116 cases. Nephrol Dial Transplant 25:1272–1278

    Article  PubMed  Google Scholar 

  10. Huen SC, Hall I, Topal J, Mahnensmith RL, Brewster UC, Abu-Alfa AK (2009) Successful use of intraperitoneal daptomycin in the treatment of vancomycin-resistant enterococcus peritonitis. Am J Kidney Dis 54:538–541

    Article  PubMed  Google Scholar 

  11. Hassoun AA, Coomer RW, Mendez-Vigo L (2009) Intraperitoneal daptomycin used to successfully treat vancomycin-resistant enterococcus peritonitis. Perit Dial Int 29:671–673

    CAS  PubMed  Google Scholar 

  12. Song IJ, Seo JW, Kwon YE, Kim YL, Lim TS, Kang EW et al (2014) Successful treatment of vancomycin-resistant enterococcus peritonitis using linezolid without catheter removal in a peritoneal dialysis patient. Perit Dial Int 34:235–239

    Article  PubMed Central  PubMed  Google Scholar 

  13. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2015) Routine and extended internal quality control as recommended by EUCAST. Version 5.0, valid from 2015-01-09. Home page at: http://www.eucast.org

  14. Hermsen ED, Hovde LB, Hotchkiss JR, Rotschafer JC (2003) Increased killing of staphylococci and streptococci by daptomycin compared with cefazolin and vancomycin in an in vitro peritoneal dialysate model. Antimicrob Agents Chemother 47:3764–3767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Tobudic S, Poeppl W, Kratzer C, Vychytil A, Burgmann H (2012) Comparative in vitro antimicrobial activity of vancomycin, teicoplanin, daptomycin and ceftobiprole in four different peritoneal dialysis fluids. Eur J Clin Microbiol Infect Dis 31:1327–1334

    Article  CAS  PubMed  Google Scholar 

  16. Shalit I, Welch DF, San Joaquin VH, Marks MI (1985) In vitro antibacterial activities of antibiotics against Pseudomonas aeruginosa in peritoneal dialysis fluid. Antimicrob Agents Chemother 27:908–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Schwartz MA, Buckwalter FH (1962) Pharmaceutics of penicillin. J Pharm Sci 51:1119–1128

    Article  CAS  PubMed  Google Scholar 

  18. Tybring L, Melchior NH (1975) Mecillinam (FL 1060), a 6beta-amidinopenicillanic acid derivative: bactericidal action and synergy in vitro. Antimicrob Agents Chemother 8:271–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Greenwood D, O’Grady F (1973) FL 1060: a new beta-lactam antibiotic with novel properties. J Clin Pathol 26:1–6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. McDonald WA, Watts J, Bowmer MI (1986) Factors affecting Staphylococcus epidermidis growth in peritoneal dialysis solutions. J Clin Microbiol 24:104–107

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Tobudic S, Kratzer C, Poeppl W, Vychytil A, Burgmann H (2011) Impact of various peritoneal dialysis solutions on the growth of common bacterial and yeast pathogens. Perit Dial Int 31:688–692

    Article  PubMed  Google Scholar 

  22. Richards GK, Gagnon RF, Obst G, Kostiner GB (1993) The effect of peritoneal dialysis solutions on rifampin action against Staphylococcus epidermidis in the fluid and biofilm phases of growth. Perit Dial Int 13:S341–S344

    PubMed  Google Scholar 

  23. McCormick EM, Echols RM (1987) Effect of peritoneal dialysis fluid and pH on bactericidal activity of ciprofloxacin. Antimicrob Agents Chemother 31:657–659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Patel RP, Li K, Shastri M, Wanandy T, Jose MD (2015) Stability of ampicillin and amoxicillin in peritoneal dialysis solutions. Am J Health Syst Pharm 72:13–14

    Article  PubMed  Google Scholar 

  25. Roberts DM, Fernando G, Singer RF, Kennedy KJ, Lawrence M, Talaulikar G (2011) Antibiotic stability in commercial peritoneal dialysis solutions: influence of formulation, storage and duration. Nephrol Dial Transplant 26:3344–3349

    Article  CAS  PubMed  Google Scholar 

  26. Manley HJ, McClaran ML, Bedenbaugh A, Peloquin CA (2002) Linezolid stability in peritoneal dialysis solutions. Perit Dial Int 22:419–422

    CAS  PubMed  Google Scholar 

  27. Parra MA, Campanero MA, Sádaba B, Irigoyen A, García-López L, Fernandez-Reyes MJ et al (2013) Effect of glucose concentration on the stability of daptomycin in peritoneal solutions. Perit Dial Int 33:458–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Peyro Saint Paul L, Albessard F, Gaillard C, Debruyne D, Ryckelynck J-P, Coquerel A et al (2011) Daptomycin compatibility in peritoneal dialysis solutions. Perit Dial Int 31:492–495

    Article  PubMed  Google Scholar 

  29. Cozens RM, Tuomanen E, Tosch W, Zak O, Suter J, Tomasz A (1986) Evaluation of the bactericidal activity of beta-lactam antibiotics on slowly growing bacteria cultured in the chemostat. Antimicrob Agents Chemother 29:797–802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132:1297–1304

    CAS  PubMed  Google Scholar 

  31. Eagle H, Musselman AD (1948) The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. J Exp Med 88:99–131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Stille W, Uffelmann H (1973) Paradoxic bactericidal effect of penicillins on enterococci (Eagle effect). Dtsch Med Wochenschr 98:611–613

    Article  CAS  PubMed  Google Scholar 

  33. Mascio CTM, Alder JD, Silverman JA (2007) Bactericidal action of daptomycin against stationary-phase and nondividing Staphylococcus aureus cells. Antimicrob Agents Chemother 51:4255–4260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Bahte SK, Bertram A, Burkhardt O, Martens-Lobenhoffer J, Goedecke V, Bode-Böger SM et al (2010) Therapeutic serum concentrations of daptomycin after intraperitoneal administration in a patient with peritoneal dialysis-associated peritonitis. J Antimicrob Chemother 65:1312–1314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Heidelinde Schranz from the Department of Internal Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna for the valuable suggestions, excellent technical assistance, and support in the microbiological workup.

Funding

This work was supported by the Institute of Nephrology and Hematooncology of the Karl Landsteiner Society.

Conflict of interest

No conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Burgmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kussmann, M., Schuster, L., Zeitlinger, M. et al. The influence of different peritoneal dialysis fluids on the in vitro activity of ampicillin, daptomycin, and linezolid against Enterococcus faecalis . Eur J Clin Microbiol Infect Dis 34, 2257–2263 (2015). https://doi.org/10.1007/s10096-015-2477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2477-8

Keywords

Navigation