Skip to main content
Log in

In vitro antimicrobial susceptibility of Helcococcus kunzii and molecular analysis of macrolide and tetracycline resistance

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Thanks to the recent advent of matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) technology, Helcococcus kunzii is now easily identifiable and considered as an opportunistic pathogen. However, data about antimicrobial susceptibilities remain very limited. The aim of the study was, then, to assess its in vitro susceptibility to 18 antimicrobial agents and to investigate the genetic basis of macrolide and tetracycline resistance. Thirty-nine human clinical isolates of H. kunzii collected from 2008 to 2013 were studied, as well as the type strain ATCC 51366T. Minimum inhibitory concentrations (MICs) of penicillin G, amoxicillin, cefotaxime, imipenem, gentamicin, erythromycin, clindamycin, quinupristin–dalfopristin, ciprofloxacin, levofloxacin, tetracycline, tigecycline, vancomycin, teicoplanin, linezolid, daptomycin, cotrimoxazole and rifampin were determined by the microdilution method. Screening for macrolide [erm(A) including erm(TR), erm(B), erm(C), erm(F), erm(T), erm(X), msr(A) and mef(A)] and tetracycline [tet(L), tet(M) and tet(O)] resistance genes was performed, as well as the detection of mutations in 23S rRNA. Except for one strain resistant to cefotaxime, all strains were categorised as susceptible to β-lactams, glycopeptides, linezolid, daptomycin and tigecycline. Whereas ciprofloxacin and gentamicin exhibited limited activity, 95 % of strains were categorised as susceptible to levofloxacin. Concerning erythromycin, a bimodal distribution was observed, with 29 ‘wild-type’ strains (MICs from 0.25 to 2 mg/L) and 11 ‘resistant’ strains (MICs ≥256 mg/L), including ten harbouring erm(TR). Two isolates exhibited acquired tetracycline resistance (MICs of 16 mg/L) by the production of tet(M). This large study on the in vitro antimicrobial susceptibility of H. kunzii suggests that β-lactams (especially penicillins) should be preferred for the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Caliendo AM, Jordan CD, Ruoff KL (1995) Helcococcus, a new genus of catalase-negative, gram-positive cocci isolated from clinical specimens. J Clin Microbiol 33:1638

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Collins MD, Facklam RR, Rodrigues UM et al (1993) Phylogenetic analysis of some Aerococcus-like organisms from clinical sources: description of Helcococcus kunzii gen. nov., sp. nov. Int J Syst Bacteriol 43:425–429

    Article  CAS  PubMed  Google Scholar 

  3. Collins MD, Falsen E, Foster G et al (1999) Helcococcus ovis sp. nov., a gram-positive organism from sheep. Int J Syst Bacteriol 49(Pt 4):1429–1432

    Article  CAS  PubMed  Google Scholar 

  4. Collins MD, Falsen E, Brownlee K et al (2004) Helcococcus sueciensis sp. nov., isolated from a human wound. Int J Syst Evol Microbiol 54:1557–1560

    Article  CAS  PubMed  Google Scholar 

  5. Chow SK, Clarridge JE 3rd (2014) Identification and clinical significance of Helcococcus species, with description of Helcococcus seattlensis sp. nov. from a patient with urosepsis. J Clin Microbiol 52:854–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Woo PC, Tse H, Wong SS et al (2005) Life-threatening invasive Helcococcus kunzii infections in intravenous-drug users and ermA-mediated erythromycin resistance. J Clin Microbiol 43:6205–6208

    Article  PubMed  PubMed Central  Google Scholar 

  7. McNicholas S, McAdam B, Flynn M et al (2011) The challenges of implantable cardiac device infection due to Helcococcus kunzii. J Hosp Infect 78:337–338

    Article  CAS  PubMed  Google Scholar 

  8. Pérez-Jorge C, Cordero J, Marin M et al (2012) Prosthetic joint infection caused by Helcococcus kunzii. J Clin Microbiol 50:528–530

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sridhar S, Chan JF, Yuen KY (2014) First report of brain abscess caused by a satelliting phenotypic variant of Helcococcus kunzii. J Clin Microbiol 52:370–373

    Article  PubMed  PubMed Central  Google Scholar 

  10. Park JH, Woo BM, Hong SK et al (2014) First Korean case of Helcococcus kunzii bacteremia in a patient with diabetes. Ann Lab Med 34:484–486

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vergne A, Guérin F, Lienhard R et al (2015) Identification and clinical significance of Helcococcus kunzii in human samples. J Clin Microbiol (in press)

  12. Leclercq R (2002) Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 34:482–492

    Article  CAS  PubMed  Google Scholar 

  13. Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203

    Article  CAS  PubMed  Google Scholar 

  14. Dortet L, Legrand P, Soussy CJ et al (2006) Bacterial identification, clinical significance, and antimicrobial susceptibilities of Acinetobacter ursingii and Acinetobacter schindleri, two frequently misidentified opportunistic pathogens. J Clin Microbiol 44:4471–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clinical and Laboratory Standards Institute (CLSI) (2013) Performance standards for antimicrobial susceptibility testing; Twenty-third informational supplement. CLSI document M100-S23. CLSI, Wayne, PA

  16. Hays C, Lienhard R, Auzou M et al (2014) Erm(X)-mediated resistance to macrolides, lincosamides and streptogramins in Actinobaculum schaalii. J Antimicrob Chemother 69:2056–2060

    Article  CAS  PubMed  Google Scholar 

  17. Aminov RI, Garrigues-Jeanjean N, Mackie RI (2001) Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl Environ Microbiol 67:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malhotra-Kumar S, Lammens C, Piessens J et al (2005) Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob Agents Chemother 49:4798–4800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bilk S, Nordhoff M, Schulze C et al (2011) Antimicrobial susceptibilities and occurrence of resistance genes in bovine Helcococcus ovis isolates. Vet Microbiol 149:488–491

    Article  CAS  PubMed  Google Scholar 

  20. Burdett V (1990) Nucleotide sequence of the tet(M) gene of Tn916. Nucleic Acids Res 18:6137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The technical assistance of Michel Auzou is gratefully acknowledged.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Cattoir.

Additional information

A. Vergne and F. Guérin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergne, A., Guérin, F., Lienhard, R. et al. In vitro antimicrobial susceptibility of Helcococcus kunzii and molecular analysis of macrolide and tetracycline resistance. Eur J Clin Microbiol Infect Dis 34, 2057–2061 (2015). https://doi.org/10.1007/s10096-015-2451-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2451-5

Keywords

Navigation