Skip to main content

Advertisement

Log in

Rapid susceptibility testing for slowly growing nontuberculous mycobacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium WST-1

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Rapid susceptibility testing for slowly growing nontuberculous mycobacteria (NTM) using a colorimetric microbial viability assay based on the reduction of the water-soluble tetrazolium salt {2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-1)} using 2,3,5,6-tetramethyl-1,4-benzoquinone as an electron mediator was developed. Using the Clinical and Laboratory Standards Institute (CLSI) method, a long-term incubation time (7–14 days) was required to determine the minimum inhibitory concentrations (MICs) of the slowly growing NTM. The MICs for a variety of different antibiotics against the slowly growing NTM were determined by the WST-1 colorimetric method and compared with those obtained using the broth microdilution methods approved by the CLSI. Good agreement was found between the MICs determined after 3–4 days using the WST-1 colorimetric method and those obtained after 10–14 days using the broth microdilution method. The results suggest that the WST-1 colorimetric assay is a useful method for the rapid determination of the MICs for the slowly growing NTM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Covert TC, Rodgers MR, Reyes AL, Stelma GN Jr (1999) Occurrence of nontuberculous mycobacteria in environmental samples. Appl Environ Microbiol 65:2492–2496

    PubMed Central  CAS  PubMed  Google Scholar 

  2. De Groote MA, Pace NR, Fulton K, Falkinham JO 3rd (2006) Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol 72:7602–7606. doi:10.1128/AEM.00930-06

    Article  PubMed Central  PubMed  Google Scholar 

  3. Falkinham JO 3rd (2009) Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107:356–367. doi:10.1111/j.1365-2672.2009.04161.x

    Article  CAS  PubMed  Google Scholar 

  4. Fernandez-Rendon E, Cerna-Cortes JF, Ramirez-Medina MA, Helguera-Repetto AC, Rivera-Gutierrez S, Estrada-Garcia T, Gonzalez-y-Merchand JA (2012) Mycobacterium mucogenicum and other non-tuberculous mycobacteria in potable water of a trauma hospital: a potential source for human infection. J Hosp Infect 80:74–76. doi:10.1016/j.jhin.2011.10.003

    Article  CAS  PubMed  Google Scholar 

  5. Shitrit D, Baum GL, Priess R, Lavy A, Shitrit ABG, Raz M, Shlomi D, Daniele B, Kramer MR (2006) Pulmonary Mycobacterium kansasii infection in Israel, 1999–2004: clinical features, drug susceptibility, and outcome. Chest 129:771–776. doi:10.1378/chest.129.3.771

    Article  PubMed  Google Scholar 

  6. Winthrop KL, McNelley E, Kendall B, Marshall-Olson A, Morris C, Cassidy M, Saulson A, Hedberg K (2010) Pulmonary nontuberculous mycobacterial disease prevalence and clinical features: an emerging public health disease. Am J Respir Crit Care Med 182:977–982. doi:10.1164/rccm.201003-0503OC

    Article  PubMed  Google Scholar 

  7. Maekawa K, Ito Y, Hirai T, Kubo T, Imai S, Tatsumi S, Fujita K, Takakura S, Niimi A, Iinuma Y, Ichiyama S, Togashi K, Mishima M (2011) Environmental risk factors for pulmonary Mycobacterium avium-intracellulare complex disease. Chest 140:723–729. doi:10.1378/chest.10-2315

    Article  PubMed  Google Scholar 

  8. Huang CT, Tsai YJ, Wu HD, Wang JY, Yu CJ, Lee LN, Yang PC (2012) Impact of non-tuberculous mycobacteria on pulmonary function decline in chronic obstructive pulmonary disease. Int J Tuberc Lung Dis 16:539–545. doi:10.5588/ijtld.11.0412

    Article  PubMed  Google Scholar 

  9. Horsburgh CR Jr, Gettings J, Alexander LN, Lennox JL (2001) Disseminated Mycobacterium avium complex disease among patients infected with human immunodeficiency virus, 1985–2000. Clin Infect Dis 33:1938–1943. doi:10.1086/324508

    Article  PubMed  Google Scholar 

  10. Taillard C, Greub G, Weber R, Pfyffer GE, Bodmer T, Zimmerli S, Frei R, Bassetti S, Rohner P, Piffaretti JC, Bernasconi E, Bille J, Telenti A, Prod’hom G (2003) Clinical implications of Mycobacterium kansasii species heterogeneity: Swiss national survey. J Clin Microbiol 41:1240–1244. doi:10.1128/JCM.41.3.1240-1244.2003

    Article  PubMed Central  PubMed  Google Scholar 

  11. Henry MT, Inamdar L, O’Riordain D, Schweiger M, Watson JP (2004) Nontuberculous mycobacteria in non-HIV patients: epidemiology, treatment and response. Eur Respir J 23:741–746. doi:10.1183/09031936.04.00114004

    Article  CAS  PubMed  Google Scholar 

  12. Lai CC, Lee LN, Ding LW, Yu CJ, Hsueh PR, Yang PC (2006) Emergence of disseminated infections due to nontuberculous mycobacteria in non-HIV-infected patients, including immunocompetent and immunocompromised patients in a university hospital in Taiwan. J Infect 53:77–84. doi:10.1016/j.jinf.2005.10.009

    Article  PubMed  Google Scholar 

  13. Moore JE, Kruijshaar ME, Ormerod LP, Drobniewski F, Abubakar I (2010) Increasing reports of non-tuberculous mycobacteria in England, Wales and Northern Ireland, 1995–2006. BMC Public Health 10:612. doi:10.1186/1471-2458-10-612

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lai CC, Tan CK, Chou CH, Hsu HL, Liao CH, Huang YT, Yang PC, Luh KT, Hsueh PR (2010) Increasing incidence of nontuberculous mycobacteria, Taiwan, 2000–2008. Emerg Infect Dis 16:294–296. doi:10.3201/eid1602.090675

    Article  PubMed Central  PubMed  Google Scholar 

  15. Park YS, Lee CH, Lee SM, Yang SC, Yoo CG, Kim YW, Han SK, Shim YS, Yim JJ (2010) Rapid increase of non-tuberculous mycobacterial lung diseases at a tertiary referral hospital in South Korea. Int J Tuberc Lung Dis 14:1069–1071

    CAS  PubMed  Google Scholar 

  16. Clinical and Laboratory Standards Institute (CLSI) (2011) Susceptibility testing of Mycobacteria, Nocardiae, and other aerobic Actinomycetes; Approved standard—Second edition. CLSI document M24-A2. CLSI, Wayne, PA, USA

  17. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152. doi:10.1016/S1387-2656(05)11004-7

    Article  CAS  PubMed  Google Scholar 

  18. Meletiadis J, Mouton JW, Meis JF, Bouman BA, Donnelly JP, Verweij PE; EUROFUNG Network (2001) Colorimetric assay for antifungal susceptibility testing of Aspergillus species. J Clin Microbiol 39:3402–3408. doi:10.1128/JCM.39.9.3402-3408.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Tunney MM, Ramage G, Field TR, Moriarty TF, Storey DG (2004) Rapid colorimetric assay for antimicrobial susceptibility testing of Pseudomonas aeruginosa. Antimicrob Agents Chemother 48:1879–1881. doi:10.1128/AAC.48.5.1879-1881.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Moriarty F, Elborn S, Tunney M (2005) Development of a rapid colorimetric time–kill assay for determining the in vitro activity of ceftazidime and tobramycin in combination against Pseudomonas aeruginosa. J Microbiol Methods 61:171–179. doi:10.1016/j.mimet.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  21. De Logu A, Uda P, Pellerano ML, Pusceddu MC, Saddi B, Schivo ML (2001) Comparison of two rapid colorimetric methods for determining resistance of Mycobacterium tuberculosis to rifampin, isoniazid, and streptomycin in liquid medium. Eur J Clin Microbiol Infect Dis 20:33–39. doi:10.1007/PL00011234

    Article  PubMed  Google Scholar 

  22. De Logu A, Pellerano ML, Sanna A, Pusceddu MC, Uda P, Saddi B (2003) Comparison of the susceptibility testing of clinical isolates of Mycobacterium tuberculosis by the XTT colorimetric method and the NCCLS standards method. Int J Antimicrob Agents 21:244–250. doi:10.1016/S0924-8579(02)00350-3

    Article  PubMed  Google Scholar 

  23. De Logu A, Borgna R, Uda P, Sanna A, Pellerano ML, Saddi B (2003) The 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay as rapid colorimetric method for determination of antibiotic susceptibility of clinical Mycobacterium tuberculosis isolates in liquid medium. Clin Lab 49:357–365

    PubMed  Google Scholar 

  24. Singh U, Akhtar S, Mishra A, Sarkar D (2011) A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. J Microbiol Methods 84:202–207. doi:10.1016/j.mimet.2010.11.013

    Article  CAS  PubMed  Google Scholar 

  25. Tsukatani T, Suenaga H, Higuchi T, Akao T, Ishiyama M, Ezoe K, Matsumoto K (2008) Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts. J Microbiol Methods 75:109–116. doi:10.1016/j.mimet.2008.05.016

    Article  CAS  PubMed  Google Scholar 

  26. Tsukatani T, Higuchi T, Suenaga H, Akao T, Ishiyama M, Ezoe T, Matsumoto K (2009) Colorimetric microbial viability assay based on reduction of water-soluble tetrazolium salts for antimicrobial susceptibility testing and screening of antimicrobial substances. Anal Biochem 393:117–125. doi:10.1016/j.ab.2009.06.026

    Article  CAS  PubMed  Google Scholar 

  27. Ishiyama M, Shiga M, Sasamoto K, Mizoguchi M, He P (1993) A new sulfonated tetrazolium salt that produces a highly water-soluble formazan dye. Chem Pharm Bull 41:1118–1122

    Article  CAS  Google Scholar 

  28. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K (1996) A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19:1518–1520

    Article  CAS  PubMed  Google Scholar 

  29. Johnsen AR, Bendixen K, Karlson U (2002) Detection of microbial growth on polycyclic aromatic hydrocarbons in microtiter plates by using the respiration indicator WST-1. Appl Environ Microbiol 68:2683–2689. doi:10.1128/AEM.68.6.2683-2689.2002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Mäkinen J, Marjamäki M, Haanperä-Heikkinen M, Marttila H, Endourova LB, Presnova SE, Mathys V, Bifani P, Ruohonen R, Viljanen MK, Soini H (2011) Extremely high prevalence of multidrug resistant tuberculosis in Murmansk, Russia: a population-based study. Eur J Clin Microbiol Infect Dis 30:1119–1126. doi:10.1007/s10096-011-1200-7

    Article  PubMed  Google Scholar 

  31. Agrawal D, Udwadia ZF, Rodriguez C, Mehta A (2009) Increasing incidence of fluoroquinolone-resistant Mycobacterium tuberculosis in Mumbai, India. Int J Tuberc Lung Dis 13:79–83

    CAS  PubMed  Google Scholar 

  32. Sanchez-Padilla E, Dlamini T, Ascorra A, Rüsch-Gerdes S, Tefera ZD, Calain P, de la Tour R, Jochims F, Richter E, Bonnet M (2012) High prevalence of multidrug-resistant tuberculosis, Swaziland, 2009–2010. Emerg Infect Dis 18:29–37. doi:10.3201/eid1801.110850

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Satoshi Mitarai (Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association) for several valuable comments and suggestions. This research was supported by the Adaptable and Seamless Technology Transfer Program through Target-Driven R&D (A-STEP) Exploratory Research.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Tsukatani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsukatani, T., Suenaga, H., Shiga, M. et al. Rapid susceptibility testing for slowly growing nontuberculous mycobacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium WST-1. Eur J Clin Microbiol Infect Dis 34, 1965–1973 (2015). https://doi.org/10.1007/s10096-015-2438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2438-2

Keywords

Navigation