Skip to main content

Advertisement

Log in

Tigecycline resistance in Acinetobacter baumannii mediated by frameshift mutation in plsC, encoding 1-acyl-sn-glycerol-3-phosphate acyltransferase

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Acinetobacter baumannii is an important pathogen of healthcare-associated infections and shows multidrug resistance. With the increasing application of tigecycline, isolates resistant to this antibiotic are of growing concern clinically. However, the definitive mechanism of tigecycline resistance remains unclear. To explore the mechanism of tigecycline resistance in A. baumannii, a tigecycline-resistant strain was obtained by increasing the concentration of the antimicrobial in liquid culture. Three mutations were identified by the whole genome comparison, including one synonymous substitution in a hypothetical protein and a frameshift mutation in plsC and omp38. The plsC gene was confirmed to cause decreased susceptibility to tigecycline by a complementation experiment and cellular membrane change was detected by flow cytometry. By measuring the relative growth rate, the fitness cost of plsC was estimated to be approximately 8 %. In conclusion, plsC was found to play an important role in tigecycline resistance in A. baumannii. The minor fitness cost of plsC indicates a high risk of the emergence and development of tigecycline resistance in A. baumannii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dijkshoorn L, Nemec A, Seifert H (2007) An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5(12):939–951

    Article  CAS  PubMed  Google Scholar 

  2. Towner KJ (2009) Acinetobacter: an old friend, but a new enemy. J Hosp Infect 73(4):355–363

    Article  CAS  PubMed  Google Scholar 

  3. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA (2007) Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51(10):3471–3484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Farrell DJ, Turnidge JD, Bell J, Sader HS, Jones RN (2010) The in vitro evaluation of tigecycline tested against pathogens isolated in eight countries in the Asia-Western Pacific region (2008). J Infect 60(6):440–451

    Article  PubMed  Google Scholar 

  5. Hidalgo L, Hopkins KL, Gutierrez B, Ovejero CM, Shukla S, Douthwaite S, Prasad KN, Woodford N, Gonzalez-Zorn B (2013) Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK. J Antimicrob Chemother 68(7):1543–1550

    Article  CAS  PubMed  Google Scholar 

  6. Peterson LR (2008) A review of tigecycline–the first glycylcycline. Int J Antimicrob Agents 32 [Suppl 4]:S215–S222

    Article  CAS  PubMed  Google Scholar 

  7. Livermore DM (2005) Tigecycline: what is it, and where should it be used? J Antimicrob Chemother 56(4):611–614

    Article  CAS  PubMed  Google Scholar 

  8. Bauer G, Berens C, Projan SJ, Hillen W (2004) Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. J Antimicrob Chemother 53(4):592–599

    Article  CAS  PubMed  Google Scholar 

  9. Chang KC, Lin MF, Lin NT, Wu WJ, Kuo HY, Lin TY, Yang TL, Chen YC, Liou ML (2012) Clonal spread of multidrug-resistant Acinetobacter baumannii in eastern Taiwan. J Microbiol Immunol Infect 45(1):37–42

    Article  CAS  PubMed  Google Scholar 

  10. Anthony KB, Fishman NO, Linkin DR, Gasink LB, Edelstein PH, Lautenbach E (2008) Clinical and microbiological outcomes of serious infections with multidrug-resistant gram-negative organisms treated with tigecycline. Clin Infect Dis 46(4):567–570

    Article  PubMed  Google Scholar 

  11. Peleg AY, Potoski BA, Rea R, Adams J, Sethi J, Capitano B, Husain S, Kwak EJ, Bhat SV, Paterson DL (2007) Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother 59(1):128–131

    Article  CAS  PubMed  Google Scholar 

  12. Ruzin A, Immermann FW, Bradford PA (2010) RT-PCR and statistical analyses of adeABC expression in clinical isolates of Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Microb Drug Resist 16(2):87–89

    Article  CAS  PubMed  Google Scholar 

  13. Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B (2010) Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 54(10):4389–4393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yoon EJ, Courvalin P, Grillot-Courvalin C (2013) RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations. Antimicrob Agents Chemother 57(7):2989–2995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Amin IM, Richmond GE, Sen P, Koh TH, Piddock LJ, Chua KL (2013) A method for generating marker-less gene deletions in multidrug-resistant Acinetobacter baumannii. BMC Microbiol 13:158

    Article  PubMed Central  PubMed  Google Scholar 

  16. Villa L, Feudi C, Fortini D, Garcia-Fernandez A, Carattoli A (2014) Genomics of KPC-Producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and Ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother 58(3):1707–1712

    Article  PubMed Central  PubMed  Google Scholar 

  17. Linkevicius M, Sandegren L, Andersson DI (2013) Mechanisms and fitness costs of tigecycline resistance in Escherichia coli. J Antimicrob Chemother 68(12):2809–2819

    Article  CAS  PubMed  Google Scholar 

  18. Chen Q, Li X, Zhou H, Jiang Y, Chen Y, Hua X, Yu Y (2014) Decreased susceptibility to tigecycline in Acinetobacter baumannii mediated by a mutation in trm encoding SAM-dependent methyltransferase. J Antimicrob Chemother 69(1):72–76

    Article  CAS  PubMed  Google Scholar 

  19. Rock CO, Goelz SE, Cronan JE Jr (1981) Phospholipid synthesis in Escherichia coli. Characteristics of fatty acid transfer from acyl-acyl carrier protein to sn-glycerol 3-phosphate. J Biol Chem 256(2):736–742

    CAS  PubMed  Google Scholar 

  20. Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, Bonomo RA (2009) Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother 53(9):3628–3634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hunger M, Schmucker R, Kishan V, Hillen W (1990) Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene 87(1):45–51

    Article  CAS  PubMed  Google Scholar 

  24. Aranda J, Poza M, Pardo BG, Rumbo S, Rumbo C, Parreira JR, Rodriguez-Velo P, Bou G (2010) A rapid and simple method for constructing stable mutants of Acinetobacter baumannii. BMC Microbiol 10:279

    Article  PubMed Central  PubMed  Google Scholar 

  25. Freddolino PL, Goodarzi H, Tavazoie S (2012) Fitness landscape transformation through a single amino acid change in the rho terminator. PLoS Genet 8(5):e1002744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM (2000) Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob Agents Chemother 44(4):827–834

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yao J, Rock CO (2013) Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 1831(3):495–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lu B, Jiang YJ, Man MQ, Brown B, Elias PM, Feingold KR (2005) Expression and regulation of 1-acyl-sn-glycerol- 3-phosphate acyltransferases in the epidermis. J Lipid Res 46(11):2448–2457

    Article  CAS  PubMed  Google Scholar 

  29. Richmond GE, Chua KL, Piddock LJ (2013) Efflux in Acinetobacter baumannii can be determined by measuring accumulation of H33342 (bis-benzamide). J Antimicrob Chemother 68(7):1594–1600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Arias CA, Panesso D, McGrath DM, Qin X, Mojica MF, Miller C, Diaz L, Tran TT, Rincon S, Barbu EM, Reyes J, Roh JH, Lobos E, Sodergren E, Pasqualini R, Arap W, Quinn JP, Shamoo Y, Murray BE, Weinstock GM (2011) Genetic basis for in vivo daptomycin resistance in enterococci. N Engl J Med 365(10):892–900

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, Henry R, Crane B, St Michael F, Cox AD, Adler B, Nation RL, Li J, Boyce JD (2010) Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 54(12):4971–4977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Smani Y, Fàbrega A, Roca I, Sanchez-Encinales V, Vila J, Pachón J (2013) Role of OmpA in the multidrug resistance phenotype of Acinetobacter baumannii. Antimicrobial agents and chemotherapy 58(3):1806–1808

Download references

Acknowledgements

This work was supported by the State Key Program of National Natural Science of China (grant no. 81230039) and Zhejiang Province Medical Platform Backbone Talent Plan (2012RCA037).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, L., Ji, J. et al. Tigecycline resistance in Acinetobacter baumannii mediated by frameshift mutation in plsC, encoding 1-acyl-sn-glycerol-3-phosphate acyltransferase. Eur J Clin Microbiol Infect Dis 34, 625–631 (2015). https://doi.org/10.1007/s10096-014-2272-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2272-y

Keywords

Navigation