Abstract
Bloodstream infections (BSIs) are associated with high mortality and increased healthcare costs. Optimal management of BSI depends on several factors including recognition of the disease, laboratory tests and treatment. Rapid and accurate identification of the etiologic agent is crucial to be able to initiate pathogen specific antibiotic therapy and decrease mortality rates. Furthermore, appropriate treatment might slow down the emergence of antibiotic resistant strains. Culture-based methods are still considered to be the “gold standard” for the detection and identification of pathogens causing BSI. Positive blood cultures are used for Gram-staining. Subsequently, positive blood culture material is subcultured on solid media, and (semi-automated) biochemical testing is performed for species identification. Finally, a complete antibiotic susceptibility profile can be provided based on cultured colonies, which allows the start of pathogen-tailored antibiotic therapy. This conventional workflow is extremely time-consuming and can take up to several days. Furthermore, fastidious and slow-growing microorganisms, as well as antibiotic pre-treated samples can lead to false-negative results. The main aim of this review is to present different strategies to improve the conventional laboratory diagnostic steps for BSI. These approaches include protein-based (MALDI-TOF mass spectrometry) and nucleic acid-based (polymerase chain reaction [PCR]) identification from subculture, blood cultures, and whole blood to decrease time to results. Pathogen enrichment and DNA isolation methods, to enable optimal pathogen DNA recovery from whole blood, are described. In addition, the use of biomarkers as patient pre-selection tools for molecular assays are discussed.
Similar content being viewed by others
References
Libman E (1897) Weitere Mitteilungen über die Streptokokken-enteritis bei Säuglingen. Zentralbl Bakteriol XXII:376
Institute CaLS (2007) Principles and procedures for blood cultures; approved guidline. CLSI Document M47-A (ISBN 1-56238-641-7)
Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, Dodek P, Wood G, Simon D, Peters C, Ahsan M, Chateau D (2009) Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 136(5):1237–1248
Lim SM, Webb SA (2005) Nosocomial bacterial infections in intensive care units. I: organisms and mechanisms of antibiotic resistance. Anaesthesia 60(9):887–902
Kerremans JJ, van der Bij AK, Goessens W, Verbrugh HA, Vos MC (2009) Immediate incubation of blood cultures outside routine laboratory hours of operation accelerates antibiotic switching. J Clin Microbiol 47(11):3520–3523
Spraycar M (1995) Stedman’s Medical Dictionary. Williams & Wilkins, Baltimore, MD
Weinstein MP, Towns ML, Quartey SM, Mirrett S, Reimer LG, Parmigiani G, Reller LB (1997) The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis 24(4):584–602
Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101(6):1644–1655
Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31(4):1250–1256
Lever A, Mackenzie I (2007) Sepsis: definition, epidemiology, and diagnosis. BMJ 335(7625):879–883
Valles J, Palomar M, Alvarez-Lerma F, Rello J, Blanco A, Garnacho-Montero J, Martin-Loeches I (2013) Evolution over a 15-year period of clinical characteristics and outcomes of critically ill patients with community-acquired bacteremia. Crit Care Med 41(1):76–83
van Gestel A, Bakker J, Veraart CP, van Hout BA (2004) Prevalence and incidence of severe sepsis in Dutch intensive care units. Crit Care 8(4):R153–R162
CDC (1992) Report of mortality statistics. Mon Vital Stat Rep 40(11):1–23
Engel C, Brunkhorst FM, Bone HG, Brunkhorst R, Gerlach H, Grond S, Gruendling M, Huhle G, Jaschinski U, John S, Mayer K, Oppert M, Olthoff D, Quintel M, Ragaller M, Rossaint R, Stuber F, Weiler N, Welte T, Bogatsch H, Hartog C, Loeffler M, Reinhart K (2007) Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 33(4):606–618
Alberti C, Brun-Buisson C, Burchardi H, Martin C, Goodman S, Artigas A, Sicignano A, Palazzo M, Moreno R, Boulme R, Lepage E, Le Gall R (2002) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28(2):108–121
Angus DC, Wax RS (2001) Epidemiology of sepsis: an update. Crit Care Med 29(7 Suppl):S109–S116
Garrouste-Orgeas M, Timsit JF, Tafflet M, Misset B, Zahar JR, Soufir L, Lazard T, Jamali S, Mourvillier B, Cohen Y, De Lassence A, Azoulay E, Cheval C, Descorps-Declere A, Adrie C, Costa de Beauregard MA, Carlet J (2006) Excess risk of death from intensive care unit-acquired nosocomial bloodstream infections: a reappraisal. Clin Infect Dis 42(8):1118–1126
Kim PW, Perl TM, Keelaghan EF, Langenberg P, Perencevich EN, Harris AD, Song X, Roghmann MC (2005) Risk of mortality with a bloodstream infection is higher in the less severely ill at admission. Am J Respir Crit Care Med 171(6):616–620
Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39(3):309–317
Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365(9453):63–78
Shoham S, Marwaha S (2010) Invasive fungal infections in the ICU. J Intensive Care Med 25(2):78–92
Bos MM, Smeets LS, Dumay I, de Jonge E (2013) Bloodstream infections in patients with or without cancer in a large community hospital. Infection 41(5):949–958
Mermel LA, Maki DG (1993) Detection of bacteremia in adults: consequences of culturing an inadequate volume of blood. Ann Intern Med 119(4):270–272
Yagupsky P, Nolte FS (1990) Quantitative aspects of septicemia. Clin Microbiol Rev 3(3):269–279
Jonsson B, Nyberg A, Henning C (1993) Theoretical aspects of detection of bacteraemia as a function of the volume of blood cultured. APMIS 101(8):595–601
Kennaugh JK, Gregory WW, Powell KR, Hendley JO (1984) The effect of dilution during culture on detection of low concentrations of bacteria in blood. Pediatr Infect Dis 3(4):317–318
Bouza E, Sousa D, Rodriguez-Creixems M, Lechuz JG, Munoz P (2007) Is the volume of blood cultured still a significant factor in the diagnosis of bloodstream infections? J Clin Microbiol 45(9):2765–2769
Cockerill FR 3rd, Wilson JW, Vetter EA, Goodman KM, Torgerson CA, Harmsen WS, Schleck CD, Ilstrup DM, Washington JA 2nd, Wilson WR (2004) Optimal testing parameters for blood cultures. Clin Infect Dis 38(12):1724–1730
Gonsalves WI, Cornish N, Moore M, Chen A, Varman M (2009) Effects of volume and site of blood draw on blood culture results. J Clin Microbiol 47(11):3482–3485
Hall MM, Ilstrup DM, Washington JA 2nd (1976) Effect of volume of blood cultured on detection of bacteremia. J Clin Microbiol 3(6):643–645
Tenney JH, Reller LB, Mirrett S, Wang WL, Weinstein MP (1982) Controlled evaluation of the volume of blood cultured in detection of bacteremia and fungemia. J Clin Microbiol 15(4):558–561
Valles J, Rello J, Ochagavia A, Garnacho J, Alcala MA (2003) Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest 123(5):1615–1624
Harbarth S, Garbino J, Pugin J, Romand JA, Lew D, Pittet D (2003) Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med 115(7):529–535
Shorr AF, Micek ST, Welch EC, Doherty JA, Reichley RM, Kollef MH (2011) Inappropriate antibiotic therapy in Gram-negative sepsis increases hospital length of stay. Crit Care Med 39(1):46–51
Ammerlaan HS, Harbarth S, Buiting AG, Crook DW, Fitzpatrick F, Hanberger H, Herwaldt LA, van Keulen PH, Kluytmans JA, Kola A, Kuchenbecker RS, Lingaas E, Meessen N, Morris-Downes MM, Pottinger JM, Rohner P, dos Santos RP, Seifert H, Wisplinghoff H, Ziesing S, Walker AS, Bonten MJ (2013) Secular trends in nosocomial bloodstream infections: antibiotic-resistant bacteria increase the total burden of infection. Clin Infect Dis 56(6):798–805
de Kraker ME, Jarlier V, Monen JC, Heuer OE, van de Sande N, Grundmann H (2013) The changing epidemiology of bacteraemias in Europe: trends from the European Antimicrobial Resistance Surveillance System. Clin Microbiol Infect 19(9):860–868
Kellogg JA, Manzella JP, Bankert DA (2000) Frequency of low-level bacteremia in children from birth to fifteen years of age. J Clin Microbiol 38(6):2181–2185
Engler HD, Fahle GA, Gill VJ (1996) Clinical evaluation of the BacT/Alert and isolator aerobic blood culture systems. Am J Clin Pathol 105(6):774–781
McDonald LC, Fune J, Gaido LB, Weinstein MP, Reimer LG, Flynn TM, Wilson ML, Mirrett S, Reller LB (1996) Clinical importance of increased sensitivity of BacT/Alert FAN aerobic and anaerobic blood culture bottles. J Clin Microbiol 34(9):2180–2184
Weinstein MP, Mirrett S, Reimer LG, Wilson ML, Smith-Elekes S, Chuard CR, Joho KL, Reller LB (1995) Controlled evaluation of BacT/Alert standard aerobic and FAN aerobic blood culture bottles for detection of bacteremia and fungemia. J Clin Microbiol 33(4):978–981
Akan OA, Yildiz E (2006) Comparison of the effect of delayed entry into 2 different blood culture systems (BACTEC 9240 and BacT/ALERT 3D) on culture positivity. Diagn Microbiol Infect Dis 54(3):193–196
Sautter RL, Bills AR, Lang DL, Ruschell G, Heiter BJ, Bourbeau PP (2006) Effects of delayed-entry conditions on the recovery and detection of microorganisms from BacT/ALERT and BACTEC blood culture bottles. J Clin Microbiol 44(4):1245–1249
Schwetz I, Hinrichs G, Reisinger EC, Krejs GJ, Olschewski H, Krause R (2007) Delayed processing of blood samples influences time to positivity of blood cultures and results of Gram stain-acridine orange leukocyte Cytospin test. J Clin Microbiol 45(8):2691–2694
Piette A, Verschraegen G (2009) Role of coagulase-negative staphylococci in human disease. Vet Microbiol 134(1–2):45–54
Bates DW, Lee TH (1992) Rapid classification of positive blood cultures. Prospective validation of a multivariate algorithm. JAMA 267(14):1962–1966
Hall KK, Lyman JA (2006) Updated review of blood culture contamination. Clin Microbiol Rev 19(4):788–802
Surdulescu S, Utamsingh D, Shekar R (1998) Phlebotomy teams reduce blood-culture contamination rate and save money. Clin Perform Qual Healthc 6(2):60–62
Weinbaum FI, Lavie S, Danek M, Sixsmith D, Heinrich GF, Mills SS (1997) Doing it right the first time: quality improvement and the contaminant blood culture. J Clin Microbiol 35(3):563–565
Trubiano JA, Holmes NE, Williams DS, Ng J, Chua K, Howden BP (2012) Coxiella burnetii endocarditis after Q fever vaccination. J Med Microbiol 61(Pt 12):1775–1779
Glerant JC, Hellmuth D, Schmit JL, Ducroix JP, Jounieaux V (1999) Utility of blood cultures in community-acquired pneumonia requiring hospitalization: influence of antibiotic treatment before admission. Respir Med 93(3):208–212
Grace CJ, Lieberman J, Pierce K, Littenberg B (2001) Usefulness of blood culture for hospitalized patients who are receiving antibiotic therapy. Clin Infect Dis 32(11):1651–1655
McKenzie R, Reimer LG (1987) Effect of antimicrobials on blood cultures in endocarditis. Diagn Microbiol Infect Dis 8(3):165–172
Zadoks RN, Watts JL (2009) Species identification of coagulase-negative staphylococci: genotyping is superior to phenotyping. Vet Microbiol 134(1–2):20–28
van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48(3):900–907
Anhalt JP, Fenselau C (1975) Identification of bacteria using mass spectrometry. Anal Chem 47:219–225
Dubois D, Leyssene D, Chacornac JP, Kostrzewa M, Schmit PO, Talon R, Bonnet R, Delmas J (2010) Identification of a variety of Staphylococcus species by MALDI-TOF mass spectrometry. J Clin Microbiol 48:941–945
Ferreira L, Vega S, Sanchez-Juanes F, Gonzalez M, Herrero A, Muniz MC, Gonzalez-Buitrago JM, Munoz JL (2010) Identifying bacteria using a matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometer. Comparison with routine methods used in clinical microbiology laboratories. Enferm Infecc Microbiol Clin 28(8):492–497
Bernardo K, Pakulat N, Macht M, Krut O, Seifert H, Fleer S, Hunger F, Kronke M (2002) Identification and discrimination of Staphylococcus aureus strains using matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics 2(6):747–753
Friedrichs C, Rodloff AC, Chhatwal GS, Schellenberger W, Eschrich K (2007) Rapid identification of viridans streptococci by mass spectrometric discrimination. J Clin Microbiol 45(8):2392–2397
Degand N, Carbonnelle E, Dauphin B, Beretti JL, Le Bourgeois M, Sermet-Gaudelus I, Segonds C, Berche P, Nassif X, Ferroni A (2008) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis patients. J Clin Microbiol 46(10):3361–3367
Nagy E, Becker S, Kostrzewa M, Barta N, Urban E (2012) The value of MALDI-TOF MS for the identification of clinically relevant anaerobic bacteria in routine laboratories. J Med Microbiol 61(Pt 10):1393–1400
Knoester M, van Veen SQ, Claas EC, Kuijper EJ (2012) Routine identification of clinical isolates of anaerobic bacteria: matrix-assisted laser desorption ionization-time of flight mass spectrometry performs better than conventional identification methods. J Clin Microbiol 50(4):1504
Marklein G, Josten M, Klanke U, Muller E, Horre R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG (2009) Matrix-assisted laser desorption ionization-time of flight mass-spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47(9):2912–2917
Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfelbacher M (2010) Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol 48(5):1584–1591
La Scola B, Raoult D (2009) Direct identification of bacteria in positive blood culture bottles by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry. PLoS One 4(11):e8041
Prod’hom G, Bizzini A, Durussel C, Bille J, Greub G (2010) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for direct bacterial identification from positive blood culture pellets. J Clin Microbiol 48(4):1481–1483
Ferreira L, Sanchez-Juanes F, Guerra IP, Garcia Garcia MI, Sanchez JE, Gonzalez-Buitrago JM, Bellido JL (2011) Microorganisms direct identification from blood culture by MALDI-TOF mass spectrometry. Clin Microbiol Infect 17(4):546–551
Stevenson LG, Drake SK, Murray PR (2010) Rapid Identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. J Clin Microbiol 48(2):444–447
Loonen AJ, Jansz AR, Kreeftenberg H, Bruggeman CA, Wolffs PF, van den Brule AJ (2011) Acceleration of the direct identification of Staphylococcus aureus versus coagulase-negative staphylococci from blood culture material: a comparison of six bacterial DNA extraction methods. Eur J Clin Microbiol Infect Dis 30(3):337–342
Szabados F, Michels M, Kaase M, Gatermann S (2011) The sensitivity of direct identification from positive BacT/ALERT (bioMerieux) blood culture bottles by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is low. Clin Microbiol Infect 17(2):192–195
Drancourt M (2010) Detection of microorganisms in blood specimens using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a review. Clin Microbiol Infect 16(11):1620–1625
Moussaoui W, Jaulhac B, Hoffmann AM, Ludes B, Kostrzewa M, Riegel P, Prevost G (2010) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin Microbiol Infect 16(11):1631–1638
Hrabak J, Studentova V, Walkova R, Zemlickova H, Jakubu V, Chudackova E, Gniadkowski M, Pfeifer Y, Perry JD, Wilkinson K, Bergerova T (2012) Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50(7):2441–2443
Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M (2012) Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against beta-lactam antibiotics. J Clin Microbiol 50(3):927–937
Burckhardt I, Zimmermann S (2011) Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol 49(9):3321–3324
Hrabak J, Chudackova E, Walkova R (2013) Matrix-assisted laser desorption ionization-time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev 26(1):103–114
Hartmann H, Stender H, Schafer A, Autenrieth IB, Kempf VA (2005) Rapid identification of Staphylococcus aureus in blood cultures by a combination of fluorescence in situ hybridization using peptide nucleic acid probes and flow cytometry. J Clin Microbiol 43(9):4855–4857
Wang P (2010) Simultaneous detection and differentiation of Staphylococcus species in blood cultures using fluorescence in situ hybridization. Med Princ Pract 19(3):218–221
Gescher DM, Kovacevic D, Schmiedel D, Siemoneit S, Mallmann C, Halle E, Gobel UB, Moter A (2008) Fluorescence in situ hybridisation (FISH) accelerates identification of Gram-positive cocci in positive blood cultures. Int J Antimicrob Agents 32 Suppl 1:S51–9
Jansen GJ, Mooibroek M, Idema J, Harmsen HJ, Welling GW, Degener JE (2000) Rapid identification of bacteria in blood cultures by using fluorescently labeled oligonucleotide probes. J Clin Microbiol 38(2):814–817
Sogaard M, Stender H, Schonheyder HC (2005) Direct identification of major blood culture pathogens, including Pseudomonas aeruginosa and Escherichia coli, by a panel of fluorescence in situ hybridization assays using peptide nucleic acid probes. J Clin Microbiol 43(4):1947–1949
Wellinghausen N, Nockler K, Sigge A, Bartel M, Essig A, Poppert S (2006) Rapid detection of Brucella spp. in blood cultures by fluorescence in situ hybridization. J Clin Microbiol 44(5):1828–1830
Kempf VA, Trebesius K, Autenrieth IB (2000) Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol 38(2):830–838
Peters RP, van Agtmael MA, Simoons-Smit AM, Danner SA, Vandenbroucke-Grauls CM, Savelkoul PH (2006) Rapid identification of pathogens in blood cultures with a modified fluorescence in situ hybridization assay. J Clin Microbiol 44(11):4186–4188
Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350
Tissari P, Zumla A, Tarkka E, Mero S, Savolainen L, Vaara M, Aittakorpi A, Laakso S, Lindfors M, Piiparinen H, Maki M, Carder C, Huggett J, Gant V (2010) Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study. Lancet 375(9710):224–230
Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, Yao JD, Wengenack NL, Rosenblatt JE, Cockerill FR 3rd, Smith TF (2006) Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev 19(1):165–256
Ieven M, Goossens H (1997) Relevance of nucleic acid amplification techniques for diagnosis of respiratory tract infections in the clinical laboratory. Clin Microbiol Rev 10(2):242–256
Persing DH (1993) Diagnostic molecular microbiology. Current challenges and future directions. Diagn Microbiol Infect Dis 16(2):159–163
Greisen K, Loeffelholz M, Purohit A, Leong D (1994) PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 32(2):335–351
Jou NT, Yoshimori RB, Mason GR, Louie JS, Liebling MR (1997) Single-tube, nested, reverse transcriptase PCR for detection of viable Mycobacterium tuberculosis. J Clin Microbiol 35(5):1161–1165
Klausegger A, Hell M, Berger A, Zinober K, Baier S, Jones N, Sperl W, Kofler B (1999) Gram type-specific broad-range PCR amplification for rapid detection of 62 pathogenic bacteria. J Clin Microbiol 37(2):464–466
Van Burik JA, Myerson D, Schreckhise RW, Bowden RA (1998) Panfungal PCR assay for detection of fungal infection in human blood specimens. J Clin Microbiol 36(5):1169–1175
Brakstad OG, Aasbakk K, Maeland JA (1992) Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30(7):1654–1660
Costa AM, Kay I, Palladino S (2005) Rapid detection of mecA and nuc genes in staphylococci by real-time multiplex polymerase chain reaction. Diagn Microbiol Infect Dis 51(1):13–17
Iwase T, Hoshina S, Seki K, Shinji H, Masuda S, Mizunoe Y (2008) Rapid identification and specific quantification of Staphylococcus epidermidis by 5′ nuclease real-time polymerase chain reaction with a minor groove binder probe. Diagn Microbiol Infect Dis 60(2):217–219
Martineau F, Picard FJ, Ke D, Paradis S, Roy PH, Ouellette M, Bergeron MG (2001) Development of a PCR assay for identification of staphylococci at genus and species levels. J Clin Microbiol 39(7):2541–2547
Prere MF, Baron O, Cohen Bacrie S, Fayet O (2006) Genotype MRSA, a new genetic test for the rapid identification of staphylococci and detection of mecA gene. Pathol Biol (Paris) 54(8–9):502–505
Wellinghausen N, Siegel D, Gebert S, Winter J (2009) Rapid detection of Staphylococcus aureus bacteremia and methicillin resistance by real-time PCR in whole blood samples. Eur J Clin Microbiol Infect Dis 28(8):1001–1005
Hassan-King M, Baldeh I, Secka O, Falade A, Greenwood B (1994) Detection of Streptococcus pneumoniae DNA in blood cultures by PCR. J Clin Microbiol 32(7):1721–1724
Corless CE, Guiver M, Borrow R, Edwards-Jones V, Fox AJ, Kaczmarski EB (2001) Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol 39(4):1553–1558
Peters RP, van Agtmael MA, Gierveld S, Danner SA, Groeneveld AB, Vandenbroucke-Grauls CM, Savelkoul PH (2007) Quantitative detection of Staphylococcus aureus and Enterococcus faecalis DNA in blood to diagnose bacteremia in patients in the intensive care unit. J Clin Microbiol 45(11):3641–3646
Loeffler J, Hebart H, Cox P, Flues N, Schumacher U, Einsele H (2001) Nucleic acid sequence-based amplification of Aspergillus RNA in blood samples. J Clin Microbiol 39(4):1626–1629
Wellinghausen N, Siegel D, Winter J, Gebert S (2009) Rapid diagnosis of candidaemia by real-time PCR detection of Candida DNA in blood samples. J Med Microbiol 58(Pt 8):1106–1111
Mancini N, Carletti S, Ghidoli N, Cichero P, Burioni R, Clementi M (2010) The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev 23(1):235–251
Dierkes C, Ehrenstein B, Siebig S, Linde HJ, Reischl U, Salzberger B (2009) Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infect Dis 9:126
Hansen WL, Beuving J, Bruggeman CA, Wolffs PF (2010) Molecular probes for diagnosis of clinically relevant bacterial infections in blood cultures. J Clin Microbiol 48(12):4432–4438
Barken KB, Haagensen JA, Tolker-Nielsen T (2007) Advances in nucleic acid-based diagnostics of bacterial infections. Clin Chim Acta 384(1–2):1–11
Fredricks DN, Relman DA (1998) Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. J Clin Microbiol 36(10):2810–2816
Klouche M, Schroder U (2008) Rapid methods for diagnosis of bloodstream infections. Clin Chem Lab Med 46(7):888–908
Song JH, Cho H, Park MY, Na DS, Moon HB, Pai CH (1993) Detection of Salmonella typhi in the blood of patients with typhoid fever by polymerase chain reaction. J Clin Microbiol 31(6):1439–1443
Iralu JV, Sritharan VK, Pieciak WS, Wirth DF, Maguire JH, Barker RH Jr (1993) Diagnosis of Mycobacterium avium bacteremia by polymerase chain reaction. J Clin Microbiol 31(7):1811–1814
Rantakokko-Jalava K, Jalava J (2002) Optimal DNA isolation method for detection of bacteria in clinical specimens by broad-range PCR. J Clin Microbiol 40(11):4211–4217
Handschur M, Karlic H, Hertel C, Pfeilstocker M, Haslberger AG (2008) Preanalytic removal of human DNA eliminates false signals in general 16S rDNA PCR monitoring of bacterial pathogens in blood. Comp Immunol Microbiol Infect Dis 32(3):207–219
Al-Soud WA, Radstrom P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39(2):485–493
Muhl H, Kochem AJ, Disque C, Sakka SG (2010) Activity and DNA contamination of commercial polymerase chain reaction reagents for the universal 16S rDNA real-time polymerase chain reaction detection of bacterial pathogens in blood. Diagn Microbiol Infect Dis 66(1):41–49
Corless CE, Guiver M, Borrow R, Edwards-Jones V, Kaczmarski EB, Fox AJ (2000) Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J Clin Microbiol 38(5):1747–1752
Horz HP, Scheer S, Huenger F, Vianna ME, Conrads G (2008) Selective isolation of bacterial DNA from human clinical specimens. J Microbiol Methods 72(1):98–102
Horz HP, Scheer S, Vianna ME, Conrads G (2010) New methods for selective isolation of bacterial DNA from human clinical specimens. Anaerobe 16(1):47–53
Loonen AJ, Bos MP, van Meerbergen B, Neerken S, Catsburg A, Dobbelaer I, Penterman R, Maertens G, van de Wiel P, Savelkoul P, van den Brule AJ (2013) Comparison of pathogen DNA isolation methods from large volumes of whole blood to improve molecular diagnosis of bloodstream infections. PLoS One 8(8):e72349
Hansen WL, Bruggeman CA, Wolffs PF (2009) Evaluation of new preanalysis sample treatment tools and DNA isolation protocols to improve bacterial pathogen detection in whole blood. J Clin Microbiol 47(8):2629–2631
Wiesinger-Mayr H, Jordana-Lluch E, Martro E, Schoenthaler S, Noehammer C (2011) Establishment of a semi-automated pathogen DNA isolation from whole blood and comparison with commercially available kits. J Microbiol Methods 85(3):206–213
Gebert S, Siegel D, Wellinghausen N (2008) Rapid detection of pathogens in blood culture bottles by real-time PCR in conjunction with the pre-analytic tool MolYsis. J Infect 57:307–316
Casalta JP, Gouriet F, Roux V, Thuny F, Habib G, Raoult D (2009) Evaluation of the LightCycler(R) SeptiFast test in the rapid etiologic diagnostic of infectious endocarditis. Eur J Clin Microbiol Infect Dis 28(6):569–573
Mauro MV, Cavalcanti P, Perugini D, Noto A, Sperli D, Giraldi C (2012) Diagnostic utility of LightCycler SeptiFast and procalcitonin assays in the diagnosis of bloodstream infection in immunocompromised patients. Diagn Microbiol Infect Dis 73(4):308–311
Kuhn C, Disque C, Muhl H, Orszag P, Stiesch M, Haverich A (2011) Evaluation of commercial universal rRNA gene PCR plus sequencing tests for identification of bacteria and fungi associated with infectious endocarditis. J Clin Microbiol 49(8):2919–2923
Wellinghausen N, Kochem AJ, Disque C, Muhl H, Gebert S, Winter J, Matten J, Sakka SG (2009) Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J Clin Microbiol 47(9):2759–2765
Fitting C, Parlato M, Adib-Conquy M, Memain N, Philippart F, Misset B, Monchi M, Cavaillon JM, Adrie C (2012) DNAemia detection by multiplex PCR and biomarkers for infection in systemic inflammatory response syndrome patients. PLoS One 7(6):e38916
Serra J, Rosello E, Figueras C, Pujol M, Peña M, Céspedes P, Dapena JL, Díaz-Heredia C, Codina MG, Andreu A (2012) Clinical evaluation of the Magicplex Sepsis Real-time Test (Seegene) to detect Candida DNA in pediatric patients. Crit Care 16:21
Schreiber J, Nierhaus A, Braune SA, de Heer G, Kluge S (2013) Comparison of three different commercial PCR assays for the detection of pathogens in critically ill sepsis patients. Med Klin Intensivmed Notfallmed 108(4):311–318
Loonen AJ, de Jager CP, Tosserams J, Kusters R, Hilbink M, Wever PC, van den Brule AJ (2014) Biomarkers and molecular analysis to improve bloodstream infection diagnostics in an emergency care unit. PLoS One 9(1):e87315
Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100
Birch L, Dawson CE, Cornett JH, Keer JT (2001) A comparison of nucleic acid amplification techniques for the assessment of bacterial viability. Lett Appl Microbiol 33(4):296–301
Aellen S, Que YA, Guignard B, Haenni M, Moreillon P (2006) Detection of live and antibiotic-killed bacteria by quantitative real-time PCR of specific fragments of rRNA. Antimicrob Agents Chemother 50(6):1913–1920
Morre SA, Sillekens PT, Jacobs MV, de Blok S, Ossewaarde JM, van Aarle P, van Gemen B, Walboomers JM, Meijer CJ, van den Brule AJ (1998) Monitoring of Chlamydia trachomatis infections after antibiotic treatment using RNA detection by nucleic acid sequence based amplification. Mol Pathol 51(3):149–154
Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362(6422):709–715
Chuang YC, Chang SC, Wang WK (2012) Using the rate of bacterial clearance determined by real-time polymerase chain reaction as a timely surrogate marker to evaluate the appropriateness of antibiotic usage in critical patients with Acinetobacter baumannii bacteremia. Crit Care Med 40(8):2273–2280
Sakka SG, Kochem AJ, Disque C, Wellinghausen N (2009) Blood infection diagnosis by 16S rDNA broad-spectrum polymerase chain reaction: the relationship between antibiotic treatment and bacterial DNA load. Anesth Analg 109(5):1707–1708
Peters RP, de Boer RF, Schuurman T, Gierveld S, Kooistra-Smid M, van Agtmael MA, Vandenbroucke-Grauls CM, Persoons MC, Savelkoul PH (2009) Streptococcus pneumoniae DNA load in blood as a marker of infection in patients with community-acquired pneumonia. J Clin Microbiol 47(10):3308–3312
Nocker A, Sossa-Fernandez P, Burr MD, Camper AK (2007) Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 73(16):5111–5117
Josephson KL, Gerba CP, Pepper IL (1993) Polymerase chain reaction detection of nonviable bacterial pathogens. Appl Environ Microbiol 59(10):3513–3515
Sheridan GE, Masters CI, Shallcross JA, MacKey BM (1998) Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl Environ Microbiol 64(4):1313–1318
Hellyer TJ, DesJardin LE, Teixeira L, Perkins MD, Cave MD, Eisenach KD (1999) Detection of viable Mycobacterium tuberculosis by reverse transcriptase-strand displacement amplification of mRNA. J Clin Microbiol 37(3):518–523
Cenciarini C, Courtois S, Raoult D, La Scola B (2008) Influence of long time storage in mineral water on RNA stability of Pseudomonas aeruginosa and Escherichia coli after heat inactivation. PLoS One 3(10):e3443
Kaleta EJ, Clark AE, Johnson DR, Gamage DC, Wysocki VH, Cherkaoui A, Schrenzel J, Wolk DM (2011) Use of PCR coupled with electrospray ionization mass spectrometry for rapid identification of bacterial and yeast bloodstream pathogens from blood culture bottles. J Clin Microbiol 49(1):345–353
Kaleta EJ, Clark AE, Cherkaoui A, Wysocki VH, Ingram EL, Schrenzel J, Wolk DM (2011) Comparative analysis of PCR-electrospray ionization/mass spectrometry (MS) and MALDI-TOF/MS for the identification of bacteria and yeast from positive blood culture bottles. Clin Chem 57(7):1057–1067
Gharizadeh B, Norberg E, Loffler J, Jalal S, Tollemar J, Einsele H, Klingspor L, Nyren P (2004) Identification of medically important fungi by the Pyrosequencing technology. Mycoses 47(1–2):29–33
Jordan JA, Butchko AR, Durso MB (2005) Use of pyrosequencing of 16S rRNA fragments to differentiate between bacteria responsible for neonatal sepsis. J Mol Diagn 7(1):105–110
Jordan JA, Jones-Laughner J, Durso MB (2009) Utility of pyrosequencing in identifying bacteria directly from positive blood culture bottles. J Clin Microbiol 47(2):368–372
van Vliet AH (2010) Next generation sequencing of microbial transcriptomes: challenges and opportunities. FEMS Microbiol Lett 302(1):1–7
Koser CU, Holden MT, Ellington MJ, Cartwright EJ, Brown NM, Ogilvy-Stuart AL, Hsu LY, Chewapreecha C, Croucher NJ, Harris SR, Sanders M, Enright MC, Dougan G, Bentley SD, Parkhill J, Fraser LJ, Betley JR, Schulz-Trieglaff OB, Smith GP, Peacock SJ (2012) Rapid whole-genome sequencing for investigation of a neonatal MRSA outbreak. N Engl J Med 366(24):2267–2275
Salipante SJ, Sengupta DJ, Rosenthal C, Costa G, Spangler J, Sims EH, Jacobs MA, Miller SI, Hoogestraat DR, Cookson BT, McCoy C, Matsen FA, Shendure J, Lee CC, Harkins TT, Hoffman NG (2013) Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. PLoS One 8(5):e65226
Cheval J, Sauvage V, Frangeul L, Dacheux L, Guigon G, Dumey N, Pariente K, Rousseaux C, Dorange F, Berthet N, Brisse S, Moszer I, Bourhy H, Manuguerra CJ, Lecuit M, Burguiere A, Caro V, Eloit M (2011) Evaluation of high-throughput sequencing for identifying known and unknown viruses in biological samples. J Clin Microbiol 49(9):3268–3275
Frey KG, Herrera-Galeano JE, Redden CL, Luu TV, Servetas SL, Mateczun AJ, Mokashi VP, Bishop-Lilly KA (2014) Comparison of three next-generation sequencing platforms for metagenomic sequencing and identification of pathogens in blood. BMC Genomics 15:96
Dalton WS, Friend SH (2006) Cancer biomarkers—an invitation to the table. Science 312(5777):1165–1168
Petrikkos GL, Christofilopoulou SA, Tentolouris NK, Charvalos EA, Kosmidis CJ, Daikos GL (2005) Value of measuring serum procalcitonin, C-reactive protein, and mannan antigens to distinguish fungal from bacterial infections. Eur J Clin Microbiol Infect Dis 24(4):272–275
Standage SW, Wong HR (2011) Biomarkers for pediatric sepsis and septic shock. Expert Rev Anti-Infect Ther 9(1):71–79
Uusitalo-Seppala R, Koskinen P, Leino A, Peuravuori H, Vahlberg T, Rintala EM (2011) Early detection of severe sepsis in the emergency room: diagnostic value of plasma C-reactive protein, procalcitonin, and interleukin-6. Scand J Infect Dis 43(11–12):883–890
Mencacci A, Leli C, Cardaccia A, Meucci M, Moretti A, D’Alo F, Farinelli S, Pagliochini R, Barcaccia M, Bistoni F (2012) Procalcitonin predicts real-time PCR results in blood samples from patients with suspected sepsis. PLoS One 7(12):e53279
de Jager CP, van Wijk PT, Mathoera RB, de Jongh-Leuvenink J, van der Poll T, Wever PC (2010) Lymphocytopenia and neutrophil-lymphocyte count ratio predict bacteremia better than conventional infection markers in an emergency care unit. Crit Care 14(5):R192
Backes Y, van der Sluijs KF, Mackie DP, Tacke F, Koch A, Tenhunen JJ, Schultz MJ (2012) Usefulness of suPAR as a biological marker in patients with systemic inflammation or infection: a systematic review. Intensive Care Med 38(9):1418–1428
Donadello K, Scolletta S, Covajes C, Vincent JL (2012) suPAR as a prognostic biomarker in sepsis. BMC Med 10:2
Haupt TH, Petersen J, Ellekilde G, Klausen HH, Thorball CW, Eugen-Olsen J, Andersen O (2012) Plasma suPAR levels are associated with mortality, admission time, and Charlson Comorbidity Index in the acutely admitted medical patient: a prospective observational study. Crit Care 16(4):R130
Hoenigl M, Raggam RB, Wagner J, Valentin T, Leitner E, Seeber K, Zollner-Schwetz I, Krammer W, Pruller F, Grisold AJ, Krause R (2013) Diagnostic accuracy of soluble urokinase plasminogen activator receptor (suPAR) for prediction of bacteremia in patients with systemic inflammatory response syndrome. Clin Biochem 46(3):225–229
Koch A, Voigt S, Kruschinski C, Sanson E, Duckers H, Horn A, Yagmur E, Zimmermann H, Trautwein C, Tacke F (2011) Circulating soluble urokinase plasminogen activator receptor is stably elevated during the first week of treatment in the intensive care unit and predicts mortality in critically ill patients. Crit Care 15(1):R63
Meisner M, Tschaikowsky K, Palmaers T, Schmidt J (1999) Comparison of procalcitonin (PCT) and C-reactive protein (CRP) plasma concentrations at different SOFA scores during the course of sepsis and MODS. Crit Care 3(1):45–50
Silvestre J, Coelho L, Povoa P (2010) Should C-reactive protein concentration at ICU discharge be used as a prognostic marker? BMC Anesthesiol 10:17
Gogos CA, Drosou E, Bassaris HP, Skoutelis A (2000) Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis 181(1):176–180
Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J (2004) Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis 39(2):206–217
Tang BM, Eslick GD, Craig JC, McLean AS (2007) Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis 7(3):210–217
Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY (2006) Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 34(7):1996–2003
Reinhart K, Bauer M, Riedemann NC, Hartog CS (2012) New approaches to sepsis: molecular diagnostics and biomarkers. Clin Microbiol Rev 25(4):609–634
Zahorec R (2001) Ratio of neutrophil to lymphocyte counts—rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl Lek Listy 102(1):5–14
Roldan AL, Cubellis MV, Masucci MT, Behrendt N, Lund LR, Dano K, Appella E, Blasi F (1990) Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. EMBO J 9(2):467–474
Ploug M, Ronne E, Behrendt N, Jensen AL, Blasi F, Dano K (1991) Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem 266(3):1926–1933
Eugen-Olsen J (2011) suPAR—a future risk marker in bacteremia. J Intern Med 270(1):29–31
Thuno M, Macho B, Eugen-Olsen J (2009) suPAR: the molecular crystal ball. Dis Markers 27(3):157–172
Mizukami IF, Faulkner NE, Gyetko MR, Sitrin RG, Todd RF 3rd (1995) Enzyme-linked immunoabsorbent assay detection of a soluble form of urokinase plasminogen activator receptor in vivo. Blood 86(1):203–211
Koch A, Tacke F (2012) Risk stratification and triage in the emergency department: has this become ‘suPAR’ easy? J Intern Med 272(3):243–246
Call DR, Bakko MK, Krug MJ, Roberts MC (2003) Identifying antimicrobial resistance genes with DNA microarrays. Antimicrob Agents Chemother 47(10):3290–3295
Perreten V, Vorlet-Fawer L, Slickers P, Ehricht R, Kuhnert P, Frey J (2005) Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J Clin Microbiol 43(5):2291–2302
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Loonen, A.J.M., Wolffs, P.F.G., Bruggeman, C.A. et al. Developments for improved diagnosis of bacterial bloodstream infections. Eur J Clin Microbiol Infect Dis 33, 1687–1702 (2014). https://doi.org/10.1007/s10096-014-2153-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10096-014-2153-4