Advertisement

Candida glabrata: a review of its features and resistance

  • C. F. Rodrigues
  • S. Silva
  • M. HenriquesEmail author
Review

Abstract

Candida species belong to the normal microbiota of the oral cavity and gastrointestinal and vaginal tracts, and are responsible for several clinical manifestations, from mucocutaneous overgrowth to bloodstream infections. Once believed to be non-pathogenic, Candida glabrata was rapidly blamable for many human diseases. Year after year, these pathological circumstances are more recurrent and problematic to treat, especially when patients reveal any level of immunosuppression. These difficulties arise from the capacity of C. glabrata to form biofilms and also from its high resistance to traditional antifungal therapies. Thus, this review intends to present an excerpt of the biology, epidemiology, and pathology of C. glabrata, and detail an approach to its resistance mechanisms based on studies carried out up to the present.

Keywords

Fluconazole Azole Ergosterol Candida Species Micafungin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to strategic project PTDC/SAU-MIC/119069/2010 for the financial support to the research center and for Célia F. Rodrigues’ grant.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Lass-Flörl C (2009) The changing face of epidemiology of invasive fungal disease in Europe. Mycoses 52:197–205PubMedGoogle Scholar
  2. 2.
    Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36(2):288–305. doi: 10.1111/j.1574-6976.2011.00278.x PubMedGoogle Scholar
  3. 3.
    Odds FC (1988) Candida and candidosis, 2nd edn. Bailliere Tindall, London, UKGoogle Scholar
  4. 4.
    Calderone RA (2002) Introduction and historical perspectives. In: Calderone RA (ed) Candida and candidiasis. ASM Press, Washington D.C., pp 15–25Google Scholar
  5. 5.
    Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163PubMedCentralPubMedGoogle Scholar
  6. 6.
    Bassetti M, Righi E, Costa A et al (2006) Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis 6:21PubMedCentralPubMedGoogle Scholar
  7. 7.
    Colombo AL, Guimarães T, Silva LR et al (2007) Prospective observational study of candidemia in São Paulo, Brazil: incidence rate, epidemiology, and predictors of mortality. Infect Control Hosp Epidemiol 28:570–576PubMedGoogle Scholar
  8. 8.
    Chakrabarti A, Chatterjee SS, Rao KLN et al (2009) Recent experience with fungaemia: change in species distribution and azole resistance. Scand J Infect Dis 41:275–284PubMedGoogle Scholar
  9. 9.
    Hasan F, Xess I, Wang X, Jain N, Fries BC (2009) Biofilm formation in clinical Candida isolates and its association with virulence. Microbes Infect 11:753–761PubMedCentralPubMedGoogle Scholar
  10. 10.
    Krcmery V (1999) Torulopsis glabrata: an emerging yeast pathogen in cancer patients. Int J Antimicrob Agents 11:1–6PubMedGoogle Scholar
  11. 11.
    Krcmery V, Barnes AJ (2002) Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect 50:243–260PubMedGoogle Scholar
  12. 12.
    Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384PubMedGoogle Scholar
  13. 13.
    Pfaller MA, Diekema DJ (2004) Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect 10(Suppl 1):11–23PubMedGoogle Scholar
  14. 14.
    Bethea EK, Carver BJ, Montedonico AE, Reynolds TB (2010) The inositol regulon controls viability in Candida glabrata. Microbiology 156:452–462PubMedCentralPubMedGoogle Scholar
  15. 15.
    Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24PubMedGoogle Scholar
  16. 16.
    Kim J, Sudbery P (2011) Candida albicans, a major human fungal pathogen. J Microbiol 49:171–177PubMedGoogle Scholar
  17. 17.
    Lim CS, Rosli R, Seow HF, Chong PP (2012) Candida and invasive candidiasis: back to basics. Eur J Clin Microbiol Infect Dis 31:21–31PubMedGoogle Scholar
  18. 18.
    Vincent JL, Rello J, Marshall J et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329PubMedGoogle Scholar
  19. 19.
    Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB (2006) Inflammatory response and clinical course of adult patients with nosocomial bloodstream infections caused by Candida spp. Clin Microbiol Infect 12:170–177PubMedGoogle Scholar
  20. 20.
    Vazquez JA, Dembry LM, Sanchez V et al (1998) Nosocomial Candida glabrata colonization: an epidemiologic study. J Clin Microbiol 36:421–426PubMedCentralPubMedGoogle Scholar
  21. 21.
    Vazquez JA, Sanchez V, Dmuchowski C, Dembry LM, Sobel JD, Zervos MJ (1993) Nosocomial acquisition of Candida albicans: an epidemiologic study. J Infect Dis 168:195–201PubMedGoogle Scholar
  22. 22.
    Reagan DR, Pfaller MA, Hollis RJ, Wenzel RP (1990) Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe. J Clin Microbiol 28:2733–2738PubMedCentralPubMedGoogle Scholar
  23. 23.
    Hagerty JA, Ortiz J, Reich D, Manzarbeitia C (2003) Fungal infections in solid organ transplant patients. Surg Infect (Larchmt) 4:263–271Google Scholar
  24. 24.
    Kojic EM, Darouiche RO (2004) Candida infections of medical devices. Clin Microbiol Rev 17:255–267PubMedCentralPubMedGoogle Scholar
  25. 25.
    Samaranayake LP, Fidel PL, Naglik JR et al (2002) Fungal infections associated with HIV infection. Oral Dis 8:151–160PubMedGoogle Scholar
  26. 26.
    Rajendran R, Robertson DP, Hodge PJ, Lappin DF, Ramage G (2010) Hydrolytic enzyme production is associated with Candida albicans biofilm formation from patients with type 1 diabetes. Mycopathologia 170:229–235PubMedGoogle Scholar
  27. 27.
    Kuhn DM, Ghannoum MA (2004) Candida biofilms: antifungal resistance and emerging therapeutic options. Curr Opin Investig Drugs 5:186–197PubMedGoogle Scholar
  28. 28.
    de Almeida AA, Mesquita CS, Svidzinski TI, de Oliveira KM (2013) Antifungal susceptibility and distribution of Candida spp. isolates from the University Hospital in the municipality of Dourados, State of Mato Grosso do Sul, Brazil. Rev Soc Bras Med Trop 46(3):335–339. doi: 10.1590/0037-8682-0074-2012 PubMedGoogle Scholar
  29. 29.
    Fidel PL Jr, Vazquez JA, Sobel JD (1999) Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 12:80–96PubMedCentralPubMedGoogle Scholar
  30. 30.
    Dujon B, Sherman D, Fischer G et al (2004) Genome evolution in yeasts. Nature 430:35–44PubMedGoogle Scholar
  31. 31.
    Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713PubMedGoogle Scholar
  32. 32.
    Butler G, Rasmussen MD, Lin MF et al (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662PubMedCentralPubMedGoogle Scholar
  33. 33.
    Brunke S, Hube B (2013) Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell Microbiol 15(5):701–708PubMedCentralPubMedGoogle Scholar
  34. 34.
    Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2011) Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol 19(5):241–247. doi: 10.1016/j.tim.2011.02.003 PubMedGoogle Scholar
  35. 35.
    Butler G, Kenny C, Fagan A, Kurischko C, Gaillardin C, Wolfe KH (2004) Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc Natl Acad Sci U S A 101:1632–1637PubMedCentralPubMedGoogle Scholar
  36. 36.
    Hittinger CT, Rokas A, Carroll SB (2004) Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts. Proc Natl Acad Sci U S A 101:14144–14149PubMedCentralPubMedGoogle Scholar
  37. 37.
    Roetzer A, Gabaldón T, Schüller C (2011) From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett 314:1–9PubMedCentralPubMedGoogle Scholar
  38. 38.
    Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130PubMedCentralPubMedGoogle Scholar
  39. 39.
    Cox GM, Harrison TS, Mcdade HC et al (2003) Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect Immun 71(1):173–180PubMedCentralPubMedGoogle Scholar
  40. 40.
    Nicola AM, Casadevall A, Goldman DL (2008) Fungal killing by mammalian phagocytic cells. Curr Opin Microbiol 11(4):313–317PubMedCentralPubMedGoogle Scholar
  41. 41.
    Segal AW (2005) How neutrophils kill microbes. Annu Rev Immunol 23:197–223PubMedCentralPubMedGoogle Scholar
  42. 42.
    Nakagawa Y, Kanbe T, Mizuguchi I (2003) Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents. Microbiol Immunol 47(6):395–403PubMedGoogle Scholar
  43. 43.
    Roetzer A, Gratz N, Kovarik P, Schüller C (2010) Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 12(2):199–216PubMedCentralPubMedGoogle Scholar
  44. 44.
    Saijo T, Miyazaki T, Izumikawa K et al (2010) Skn7p is involved in oxidative stress response and virulence of Candida glabrata. Mycopathologia 169(2):81–90PubMedGoogle Scholar
  45. 45.
    Lee J, Godon C, Lagniel G et al (1999) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274(23):16040–16046PubMedGoogle Scholar
  46. 46.
    Gulshan K, Lee SS, Moye-Rowley WS (2011) Differential oxidant tolerance determined by the key transcription factor Yap1 is controlled by levels of the Yap1-binding protein, Ybp1. J Biol Chem 286(39):34071–34081PubMedCentralPubMedGoogle Scholar
  47. 47.
    Roetzer A, Klopf E, Gratz N et al (2011) Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 585(2):319–327PubMedCentralPubMedGoogle Scholar
  48. 48.
    Kaur R, Ma B, Cormack BP (2007) A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci U S A 104(18):7628–7633PubMedCentralPubMedGoogle Scholar
  49. 49.
    Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3(5):1076–1087PubMedCentralPubMedGoogle Scholar
  50. 50.
    Roetzer A, Gregori C, Jennings AM et al (2008) Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol 69(3):603–620PubMedCentralPubMedGoogle Scholar
  51. 51.
    Seider K, Brunke S, Schild L et al (2011) The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol 187(6):3072–3086PubMedGoogle Scholar
  52. 52.
    Klionsky DJ (2004) Cell biology: regulated self-cannibalism. Nature 431(7004):31–32PubMedGoogle Scholar
  53. 53.
    Klionsky DJ (2005) Autophagy. Curr Biol 15(8):R282–R283PubMedGoogle Scholar
  54. 54.
    Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109PubMedGoogle Scholar
  55. 55.
    Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37(9):986–990PubMedCentralPubMedGoogle Scholar
  56. 56.
    Sundstrom P (2002) Adhesion in Candida spp. Cell Microbiol 4(8):461–469PubMedGoogle Scholar
  57. 57.
    Ruan SY, Hsueh PR (2009) Invasive candidiasis: an overview from Taiwan. J Formos Med Assoc 108(6):443–451PubMedGoogle Scholar
  58. 58.
    Kraneveld EA, De Soet JJ, Deng DM et al (2011) Identification and differential gene expression of adhesin-like wall proteins in Candida glabrata biofilms. Mycopathologia 172:415–427. doi: 10.1007/ s11046-011-9446-2 PubMedGoogle Scholar
  59. 59.
    De Groot PW, Kraneveld EA, Yin QY et al (2008) The cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins. Eukaryot Cell 7(11):1951–1964PubMedCentralPubMedGoogle Scholar
  60. 60.
    Domergue R, Castaño I, De Las Peñas A et al (2005) Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science 308(5723):866–870PubMedGoogle Scholar
  61. 61.
    Castaño I, Pan SJ, Zupancic M, Hennequin C, Dujon B, Cormack BP (2005) Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55(4):1246–1258PubMedGoogle Scholar
  62. 62.
    Jandric Z, Schüller C (2011) Stress response in Candida glabrata: pieces of a fragmented picture. Future Microbiol 6(12):1475–1484PubMedGoogle Scholar
  63. 63.
    Silva S, Henriques M, Hayes A, Oliveira R, Azeredo J, Williams DW (2011) Candida glabrata and Candida albicans co-infection of an in vitro oral epithelium. J Oral Pathol Med 40(5):421–427. doi: 10.1111/j.1600-0714.2010.00981 PubMedGoogle Scholar
  64. 64.
    Jayatilake JA, Samaranayake YH, Cheung LK, Samaranayake LP (2006) Quantitative evaluation of tissue invasion by wild type, hyphal and SAP mutants of Candida albicans, and non-albicans Candida species in reconstituted human oral epithelium. J Oral Pathol Med 35(8):484–491PubMedGoogle Scholar
  65. 65.
    Tamura NK, Negri MF, Bonassoli LA, Svidzinski TI (2007) Virulence factors for Candida spp recovered from intravascular catheters and hospital workers hands. Rev Soc Bras Med Trop 40:91–93PubMedGoogle Scholar
  66. 66.
    Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J (2009) Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol 47:681–689PubMedGoogle Scholar
  67. 67.
    Iraqui I, Garcia-Sanchez S, Aubert S et al (2005) The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Mol Microbiol 55:1259–1271PubMedGoogle Scholar
  68. 68.
    De Las Peñas A, Pan SJ, Castaño I, Alder J, Cregg R, Cormack BP (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17:2245–2258Google Scholar
  69. 69.
    Cormack BP, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285:578–582PubMedGoogle Scholar
  70. 70.
    Silva S, Henriques M, Oliveira R, Williams D, Azeredo J (2010) In vitro biofilm activity of non-Candida albicans Candida species. Curr Microbiol 61:534–540. doi: 10.1007/s00284-010-9649-7 PubMedGoogle Scholar
  71. 71.
    van Dyk D, Pretorius IS, Bauer FF (2005) Mss11p is a central element of the regulatory network that controls FLO11 expression and invasive growth in Saccharomyces cerevisiae. Genetics 169:91–106PubMedCentralPubMedGoogle Scholar
  72. 72.
    Riera M, Mogensen E, d’Enfert C, Janbon G (2012) New regulators of biofilm development in Candida glabrata. Res Microbiol 163:297–307PubMedGoogle Scholar
  73. 73.
    Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces gene family involved in invasive growth, cell–cell adhesion, and mating. Proc Natl Acad Sci U S A 97:12158–12163PubMedCentralPubMedGoogle Scholar
  74. 74.
    Sheppard DC, Yeaman MR, Welch WH et al (2004) Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279:30480–30489PubMedGoogle Scholar
  75. 75.
    Caudle KE, Barker KS, Wiederhold NP, Xu L, Homayouni R, Rogers PD (2011) Genomewide expression profile analysis of the Candida glabrata Pdr1 regulon. Eukaryot Cell 10(3):373–383. doi: 10.1128/EC.00073-10 PubMedCentralPubMedGoogle Scholar
  76. 76.
    Gutiérrez-Escribano P, Zeidler U, Suárez MB et al (2012) The NDR/LATS kinase Cbk1 controls the activity of the transcriptional regulator Bcr1 during biofilm formation in Candida albicans. PLoS Pathog 8(5):e1002683. doi: 10.1371/journal.ppat.1002683 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Chakrabarti A, Nayak N, Talwar P (1991) In vitro proteinase production by Candida species. Mycopathologia 114:163–168PubMedGoogle Scholar
  78. 78.
    Marcos-Arias C, Eraso E, Madariaga L, Aguirre JM, Quindós G (2011) Phospholipase and proteinase activities of Candida isolates from denture wearers. Mycoses 54(4):e10–e16. doi: 10.1111/j.1439-0507.2009.01812.x PubMedGoogle Scholar
  79. 79.
    Mohan das V, Ballal M (2008) Proteinase and phospholipase activity as virulence factors in Candida species isolated from blood. Rev Iberoam Micol 25(4):208–210PubMedGoogle Scholar
  80. 80.
    Kalkanci A, Güzel AB, Khalil II, Aydin M, Ilkit M, Kuştimur S (2012) Yeast vaginitis during pregnancy: susceptibility testing of 13 antifungal drugs and boric acid and the detection of four virulence factors. Med Mycol 50(6):585–593. doi: 10.3109/13693786.2012.662597 PubMedGoogle Scholar
  81. 81.
    Ueno K, Matsumoto Y, Uno J et al (2011) Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine. PLoS One 6(9):e24759PubMedCentralPubMedGoogle Scholar
  82. 82.
    Sikora M, Dabkowska M, Swoboda-Kopec E et al (2011) Differences in proteolytic activity and gene profiles of fungal strains isolated from the total parenteral nutrition patients. Folia Microbiol (Praha) 56(2):143–148. doi: 10.1007/s12223-011-0023-3 Google Scholar
  83. 83.
    Negri M, Martins M, Henriques M et al (2010) Examination of potential virulence factors of Candida tropicalis clinical isolates from hospitalized patients. Mycophatologia 169:175–182. doi: 10.1007/s11046-009-9246-0 Google Scholar
  84. 84.
    Luo G, Samaranayake LP (2002) Candida glabrata, an emerging fungal pathogen, exhibits superior relative cell surface hydrophobicity and adhesion to denture acrylic surfaces compared with Candida albicans. APMIS 110:601–610PubMedGoogle Scholar
  85. 85.
    Luo G, Samaranayake LP, Cheung BP, Tang G (2004) Reverse transcriptase polymerase chain reaction (RT-PCR) detection of HLP gene expression in Candida glabrata and its possible role in in vitro haemolysin production. APMIS 112:283–290PubMedGoogle Scholar
  86. 86.
    Berila N, Hyroššová P, Subík J (2011) Oxidative stress response and virulence factors in Candida glabrata clinical isolates. Folia Microbiol (Praha) 56(2):116–121. doi: 10.1007/s12223-011-0016-2 Google Scholar
  87. 87.
    Bader O, Schwarz A, Kraneveld EA et al (2012) Gross karyotypic and phenotypic alterations among different progenies of the Candida glabrata CBS138/ATCC2001 reference strain. PLoS One 7(12):e52218. doi: 10.1371/journal.pone.0052218 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Rai MN, Balusu S, Gorityala N, Dandu L, Kaur R (2012) Functional genomic analysis of Candida glabrata–macrophage interaction: role of chromatin remodeling in virulence. PLoS Pathog 8(8):e1002863. doi: 10.1371/journal.ppat.1002863 PubMedCentralPubMedGoogle Scholar
  89. 89.
    Niimi M, Firth NA, Cannon RD (2010) Antifungal drug resistance of oral fungi. Odontology 98(1):15–25PubMedGoogle Scholar
  90. 90.
    Akins RA (2005) An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43(4):285–318PubMedGoogle Scholar
  91. 91.
    Van Bambeke F, Balzi E, Tulkens PM (2000) Antibiotic efflux pumps. Biochem Pharmacol 60(4):457–470PubMedGoogle Scholar
  92. 92.
    Wilson D, Thewes S, Zakikhany K et al (2009) Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 9:688–700PubMedGoogle Scholar
  93. 93.
    Brunke S, Seider K, Almeida RS et al (2010) Candida glabrata tryptophan-based pigment production via the Ehrlich pathway. Mol Microbiol 76:25–47PubMedGoogle Scholar
  94. 94.
    Tscherner M, Schwarzmüller T, Kuchler K (2011) Pathogenesis and antifungal drug resistance of the human fungal pathogen Candida glabrata. Pharmaceuticals 4:169–186. doi: 10.3390/ph4010169 Google Scholar
  95. 95.
    Henry KW, Nickels JT, Edlind TD (2000) Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 44(10):2693–2700PubMedCentralPubMedGoogle Scholar
  96. 96.
    Stead DA, Walker J, Holcombe L et al (2009) Impact of the transcriptional regulator, Ace2, on the Candida glabrata secretome. Proteomics 10:212–223Google Scholar
  97. 97.
    Calcagno AM, Bignell E, Warn P et al (2003) Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation. Mol Microbiol 50:1309–1318PubMedGoogle Scholar
  98. 98.
    Ferrari S, Sanguinetti M, De Bernardis F et al (2011) Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice. Antimicrob Agents Chemother 55:1852–1860PubMedCentralPubMedGoogle Scholar
  99. 99.
    Kaur R, Castaño I, Cormack BP (2004) Functional genomic analysis of fluconazole susceptibility in the pathogenic yeast Candida glabrata: roles of calcium signaling and mitochondria. Antimicrob Agents Chemother 48:1600–1613PubMedCentralPubMedGoogle Scholar
  100. 100.
    Miyazaki T, Yamauchi S, Inamine T et al (2010) Roles of calcineurin and crz1 in antifungal susceptibility and virulence of Candida glabrata. Antimicrob Agents Chemother 54:1639–1643PubMedCentralPubMedGoogle Scholar
  101. 101.
    Bennett JE, Izumikawa K, Marr KA (2004) Mechanism of increased fluconazole resistance in Candida glabrata during prophylaxis. Antimicrob Agents Chemother 48:1773–1777PubMedCentralPubMedGoogle Scholar
  102. 102.
    Noble JA, Tsai HF, Suffis SD, Su Q, Myers TG, Bennett JE (2013) STB5 Is a negative regulator of azole resistance in Candida glabrata. Antimicrob Agents Chemother 57(2):959–967. doi: 10.1128/AAC.01278-12 PubMedCentralPubMedGoogle Scholar
  103. 103.
    Vermitsky JP, Edlind TD (2004) Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-Like transcription factor. Antimicrob Agents Chemother 48:3773–3781PubMedCentralPubMedGoogle Scholar
  104. 104.
    Vale-Silva L, Ischer F, LeibundGut-Landmann S, Sanglard D (2013) Gain-of-function mutations in PDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells. Infect Immun 81(5):1709–1720. doi: 10.1128/IAI.00074-13 PubMedCentralPubMedGoogle Scholar
  105. 105.
    Paul S, Schmidt JA, Moye-Rowley WS (2011) Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryot Cell 10(2):187–197PubMedCentralPubMedGoogle Scholar
  106. 106.
    Ferrari S, Sanguinetti M, Torelli R, Posteraro B, Sanglard D (2011) Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One 6(3):e17589. doi: 10.1371/journal.pone.0017589 PubMedCentralPubMedGoogle Scholar
  107. 107.
    Chen KH, Miyazaki T, Tsai HF, Bennett JE (2007) The bZip transcription factor Cgap1p is involved in multidrug resistance and required for activation of multidrug transporter gene CgFLR1 in Candida glabrata. Gene 386(1–2):63–72PubMedGoogle Scholar
  108. 108.
    Farahyar S, Zaini F, Kordbacheh P et al (2013) Overexpression of aldo-keto-reductase in azole-resistant clinical isolates of Candida glabrata determined by cDNA-AFLP. Daru 21:1PubMedCentralPubMedGoogle Scholar
  109. 109.
    Thompson GR 3rd, Wiederhold NP, Vallor AC, Villareal NC, Lewis JS 2nd, Patterson TF (2008) Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob Agents Chemother 52:3783–3785PubMedCentralPubMedGoogle Scholar
  110. 110.
    Pfaller MA, Castanheira M, Lockhart SR, Ahlquist AM, Messer SA, Jones RN (2012) Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 50:1199–1203PubMedCentralPubMedGoogle Scholar
  111. 111.
    Arendrup MC, Perlin DS, Jensen RH, Howard SJ, Goodwin J, Hope W (2012) Differential in vivo activities of anidulafungin, caspofungin, and micafungin against Candida glabrata isolates with and without FKS resistance mutations. Antimicrob Agents Chemother 56:2435–2442PubMedCentralPubMedGoogle Scholar
  112. 112.
    Shields RK, Nguyen MH, Press EG et al (2012) The presence of an FKS mutation rather than MIC is an independent risk factor for failure of echinocandin therapy among patients with invasive candidiasis due to Candida glabrata. Antimicrob Agents Chemother 56:4862–4869PubMedCentralPubMedGoogle Scholar
  113. 113.
    Alexander BD, Johnson MD, Pfeiffer CD et al (2013) Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 56(12):1724–1732PubMedGoogle Scholar
  114. 114.
    Vandeputte P, Tronchin G, Larcher G et al (2008) A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrob Agents Chemother 52:3701–3709PubMedCentralPubMedGoogle Scholar
  115. 115.
    Vandeputte P, Tronchin G, Bergès T, Hennequin C, Chabasse D, Bouchara JP (2007) Reduced susceptibility to polyenes associated with a missense mutation in the erg6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth. Antimicrob Agents Chemother 51:982–990PubMedCentralPubMedGoogle Scholar
  116. 116.
    Helmerhorst EJ, Venuleo C, Sanglard D, Oppenheim FG (2006) Roles of cellular respiration, CgCDR1, and CgCDR2 in Candida glabrata resistance to histatin 5. Antimicrob Agents Chemother 50:1100–1103PubMedCentralPubMedGoogle Scholar
  117. 117.
    Edgerton M, Koshlukova SE (2000) Salivary histatin 5 and its similarities to the other antimicrobial proteins in human saliva. Adv Dent Res 14:16–21PubMedGoogle Scholar
  118. 118.
    Helmerhorst EJ, Oppenheim FG (2004) The antifungal mechanisms of antimicrobial proteins. In: Hancock REW, Devine D (eds) Mammalian antimicrobial proteins, 1st edn. Cambridge University Press, Cambridge, pp 245–277Google Scholar
  119. 119.
    Oppenheim FG (1989) Salivary histidine-rich proteins. In: Tenovuo JO (ed) Human saliva: clinical chemistry and microbiology. CRC Press, Boca Raton, pp 151–160Google Scholar
  120. 120.
    Oppenheim FG, Xu T, McMillian FM et al (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 263:7472–7477PubMedGoogle Scholar
  121. 121.
    Tsai H, Bobek LA (1998) Human salivary histatins: promising anti-fungal therapeutic agents. Crit Rev Oral Biol Med 9:480–497PubMedGoogle Scholar
  122. 122.
    Van Urk H, Voll WSL, Scheffers WA, van Dijken JP (1990) Transient-state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl Environ Microbiol 56:281–287PubMedCentralPubMedGoogle Scholar
  123. 123.
    Niimi M, Kamiyama A, Tokunaga M (1988) Respiration of medically important Candida species and Saccharomyces cerevisiae in relation to glucose effect. J Med Vet Mycol 26:195–198PubMedGoogle Scholar
  124. 124.
    Shahi P, Moye-Rowley WS (2009) Coordinate control of lipid composition and drug transport activities is required for normal multidrug resistance in fungi. Biochim Biophys Acta 1794:852–859PubMedCentralPubMedGoogle Scholar
  125. 125.
    Muller H, Thierry A, Coppée JY et al (2009) Genomic polymorphism in the population of Candida glabrata: Gene copy-number variation and chromosomal translocations. Fungal Genet Biol 46:264–276PubMedGoogle Scholar
  126. 126.
    Thierry A, Bouchier C, Dujon B, Richard GF (2008) Megasatellites: a peculiar class of giant minisatellites in genes involved in cell adhesion and pathogenicity in Candida glabrata. Nucleic Acids Res 36(18):5970–5982PubMedCentralPubMedGoogle Scholar
  127. 127.
    Barchiesi F, Falconi Di Francesco L, Arzeni D, Caselli F, Gallo D, Scalise G (1999) Electrophoretic karyotyping and triazole susceptibility of Candida glabrata clinical isolates. Eur J Clin Microbiol Infect Dis 18:184–187PubMedGoogle Scholar
  128. 128.
    Kaufmann CS, Merz WG (1989) Electrophoretic karyotypes of Torulopsis glabrata. J Clin Microbiol 27:2165–2168PubMedCentralPubMedGoogle Scholar
  129. 129.
    Klempp-Selb B, Rimek D, Kappe R (2000) Karyotyping of Candida albicans and Candida glabrata from patients with Candida sepsis. Mycoses 43:159–163PubMedGoogle Scholar
  130. 130.
    Lin CY, Chen YC, Lo HJ, Chen KW, Li SY (2007) Assessment of Candida glabrata strain relatedness by pulsed-field gel electrophoresis and multilocus sequence typing. J Clin Microbiol 45:2452–2459PubMedCentralPubMedGoogle Scholar
  131. 131.
    Shin JH, Chae MJ, Song JW et al (2007) Changes in karyotype and azole susceptibility of sequential bloodstream isolates from patients with Candida glabrata candidemia. J Clin Microbiol 45:2385–2391PubMedCentralPubMedGoogle Scholar
  132. 132.
    Magee BB, Sanchez MD, Saunders D, Harris D, Berriman M, Magee PT (2008) Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species Candida dubliniensis from the virulent Candida albicans. Fungal Genet Biol 45:338–350PubMedCentralPubMedGoogle Scholar
  133. 133.
    Samaranayake LP (1990) Host factors and oral candidosis. In: Samaranayake LP, MacFarlane TW (eds) Oral candidosis. Wright-Butterworth, London, pp 66–103Google Scholar
  134. 134.
    Hawser SP, Baillie GS, Douglas LJ (1998) Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol 47(3):253–256PubMedGoogle Scholar
  135. 135.
    Chandra J, Mukherjee PK, Leidich SD et al (2001) Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 80(3):903–908PubMedGoogle Scholar
  136. 136.
    Al-Fattani MA, Douglas LJ (2004) Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother 48(9):3291–3297PubMedCentralPubMedGoogle Scholar
  137. 137.
    Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9(6):588–594PubMedGoogle Scholar
  138. 138.
    Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183(18):5385–5394PubMedCentralPubMedGoogle Scholar
  139. 139.
    Ramage G, Vande Walle K, Wickes BL, López-Ribot JL (2001) Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45(9):2475–2479PubMedCentralPubMedGoogle Scholar
  140. 140.
    Hawser S (1996) Adhesion of different Candida spp. to plastic: XTT formazan determinations. J Med Vet Mycol 34(6):407–410PubMedGoogle Scholar
  141. 141.
    Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39PubMedGoogle Scholar
  142. 142.
    Uppuluri P, Chaturvedi AK, Srinivasan A et al (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6(3):e1000828PubMedCentralPubMedGoogle Scholar
  143. 143.
    Perumal P, Mekala S, Chaffin WL (2007) Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother 51(7):2454–2463PubMedCentralPubMedGoogle Scholar
  144. 144.
    Ramage G, Rajendran R, Sherry L, Williams C (2012) Fungal biofilm resistance. Int J Microbiol 2012:528521. doi: 10.1155/2012/528521 PubMedCentralPubMedGoogle Scholar
  145. 145.
    Bandara HM, Lam OL, Watt RM, Jin LJ, Samaranayake LP (2010) Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. J Med Microbiol 59(Pt 10):1225–1234. doi: 10.1099/jmm.0.021832-0 PubMedGoogle Scholar
  146. 146.
    Halliwell SC, Smith MCA, Muston P, Holland SL, Avery SV (2012) Heterogeneous expression of the virulence-related adhesin Epa1 between individual cells and strains of the pathogen Candida glabrata. Eukaryot Cell 11(2):141–150PubMedCentralPubMedGoogle Scholar
  147. 147.
    Taff HT, Nett JE, Zarnowski R et al (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8(8):e1002848. doi: 10.1371/journal.ppat.1002848 PubMedCentralPubMedGoogle Scholar
  148. 148.
    Cannon RD, Lamping E, Holmes AR et al (2007) Candida albicans drug resistance—another way to cope with stress. Microbiology 153(Pt 10):3211–3217PubMedGoogle Scholar
  149. 149.
    Seneviratne CJ, Wang Y, Jin L, Abiko Y, Samaranayake LP (2010) Proteomics of drug resistance in Candida glabrata biofilms. Proteomics 10:1444–1454PubMedGoogle Scholar
  150. 150.
    LaFleur MD, Kumamoto CA, Lewis K (2006) Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50(11):3839–3846PubMedCentralPubMedGoogle Scholar
  151. 151.
    Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131PubMedGoogle Scholar
  152. 152.
    Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372PubMedGoogle Scholar
  153. 153.
    Lafleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans”. Antimicrob Agents Chemother 54(1):39–44PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.IBB—Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations