Carbapenem resistance and acquired class D beta-lactamases in Acinetobacter baumannii from Croatia 2009–2010

  • M. Vranić-Ladavac
  • B. BedenićEmail author
  • F. Minandri
  • M. Ištok
  • Z. Bošnjak
  • S. Frančula-Zaninović
  • R. Ladavac
  • P. ViscaEmail author


The molecular epidemiology and the genetic basis of carbapenem resistance was investigated in 185 Acinetobacter baumannii isolates obtained from 13 centers of northern Croatia and Istria during 2009–2010. All isolates were multidrug-resistant, and 35 % (n = 64) were resistant to both imipenem and meropenem. ISAba1-driven overexpression of the intrinsic bla OXA-51-like gene was observed in all carbapenem resistant isolates, and 69 % of these (n = 44) also produced acquired OXA-type carbapenemases. The presence of bla OXA-58-like, bla OXA-24/40-like, and bla OXA-23-like genes was demonstrated in 33 % (n = 21), 27 % (n = 17) and 9 % (n = 6) of carbapenem-resistant isolates, respectively. None of the isolates harbored the bla IMP, bla VIM, bla SIM, bla NDM or bla PER β-lactamase genes, while bla TEM-1 was detected in five carbapenem- and ampicillin/sulbactam-resistant isolates. Sequence group determination showed a high prevalence (81 %) of isolates belonging to the International clonal lineage (ICL)-I, although the majority (80 %) of isolates carrying acquired carbapenemase genes belonged to the ICL-II. Random amplified polymorphic DNA analysis and multilocus-sequence typing of a subset of carbapenem-resistant isolates revealed a low degree of genetic variability within both ICL-I and ICL-II populations, irrespective of the genetic basis of carbapenem resistance. Overall, an increasing trend toward carbapenem resistance was observed for A. baumannii in Croatia, and the emergence of ICL-II strains producing a variety of acquired carbapenemases.


Imipenem Meropenem Acinetobacter Baumannii Carbapenem Resistance Baumannii Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by a grant from the Croatian Ministry of Science, Education and Sport (Grant No108-1080-0015) and a visiting fellowship from Roma Tre University to BB. We thank to all Croatian collaborative centers for collecting A. baumannii isolates: Arjana Tambić Andrašević (UHI), Ana Budimir (UHC), Vlatka Janeš-Poje (GHK), Marina Payer-Pal (GHC), Snježana Nađ (GHVI), Branka Nemet (GHVA), Zdenka Peršić (NIPH), Ljiljana Čičak Smirnjak (GHVA), Sanja Krešić (GHB), Khalil Nemer (GHS), and Nada Barišić (GHP). We thank platform Genotyping of Pathogens and Public Health (Institut Pasteur) for coding MLST alleles and profiles, and to P. Higgins and G. Rossolini for providing control strains. Part of this manuscript was presented as a poster at the 23rd European Congress of Clinical Microbiology and Infectious Diseases (Berlin, 27–30 April 2013) and the 9th International Symposium on the Biology of Acinetobacter (Cologne, 19–21 June 2013).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10096_2013_1991_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1188 kb)


  1. 1.
    Dijkshoorn L, Nemec A, Seifert H (2007) An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5:939–951PubMedCrossRefGoogle Scholar
  2. 2.
    Visca P, Seifert H, Towner KJ (2011) Acinetobacter infection-an emerging threat to human health. IUBMB Life 63:1048–1054PubMedCrossRefGoogle Scholar
  3. 3.
    Towner KJ (2009) Acinetobacter: an old friend, but a new enemy. J Hosp Infect 4:355–363CrossRefGoogle Scholar
  4. 4.
    Zarrilli R, Pournaras S, Giannouli M, Tsakris A (2013) Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 41:11–19PubMedCrossRefGoogle Scholar
  5. 5.
    Poirel L, Bonnin RA, Nordmann P (2012) Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. Infect Genet Evol 12:883–893PubMedCrossRefGoogle Scholar
  6. 6.
    Kempf M, Rolain JM (2012) Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: clinical impact and therapeutic options. Int J Antimicrob Agents 39:105–114PubMedCrossRefGoogle Scholar
  7. 7.
    Zarrilli R, Giannouli M, Tomasone F, Triassi M, Tsakris A (2009) Carbapenem resistance in Acinetobacter baumannii: the molecular epidemic features of an emerging problem in health care facilities. J Infect Dev Ctries 3:335–341PubMedCrossRefGoogle Scholar
  8. 8.
    Poirel L, Bonnin RA, Nordmann P (2011) Genetic basis of antibiotic resistance in pathogenic Acinetobacter species. IUBMB Life 63:1061–1067PubMedCrossRefGoogle Scholar
  9. 9.
    Cornaglia G, Riccio ML, Mazzariol A, Lauretti L, Fontana R, Rossolini GM (1999) Appearance of IMP-1 metallo-β-lactamase in Europe. Lancet 353:899–900PubMedCrossRefGoogle Scholar
  10. 10.
    Brown S, Amyes S (2006) OXA β-lactamase in Acinetobacter: the story so far. J Antimicrob Chemother 57:1–3PubMedCrossRefGoogle Scholar
  11. 11.
    Bonnin RA, Nordmann P, Potron A, Lecuyer H, Zahar JR, Poirel L (2011) Carbapenem-hydrolyzing GES-type extended-spectrum beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 55:349–354PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Poirel L, Nordmann P (2006) Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12:826–836PubMedCrossRefGoogle Scholar
  13. 13.
    Higgins P, Poirel L, Lehmann M, Nordmann P, Seifert H (2009) OXA-143, a novel carbapenem-hydrolyzing class D β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 53:5035–5038PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Poirel L, Nordmann P (2006) Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-58 in Acinetobacter baumannii. Antimicrob Agents Chemother 50:1442–1448PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, Pitt TL (2006) The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 258:72–77PubMedCrossRefGoogle Scholar
  16. 16.
    Mugnier PD, Poirel L, Naas T, Nordmann P (2010) Worldwide dissemination of the bla OXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis 16:35–40PubMedCrossRefGoogle Scholar
  17. 17.
    Van Looveren M, Goossens H, ARPAC Steering Group (2004) Antimicrobial resistance of Acinetobacter spp. in Europe. Clin Microbiol Infect 10:684–704PubMedCrossRefGoogle Scholar
  18. 18.
    Goic-Barisic I, Bedenic B, Tonkic M, Katic S, Kalenic S, Punda-Polic V (2007) First report of molecular characterization of carbapenem-resistant Acinetobacter baumannii in different intensive care units in University Hospital Split, Croatia. J Chemother 19:416–418Google Scholar
  19. 19.
    Goic-Barisic I, Bedenic B, Tonkic M, Novak A, Katic S, Kalenic S, Punda-Polic V, Towner KJ (2009) Occurrence of OXA-107 and ISAba1 in carbapenem-resistant isolates of Acinetobacter baumannii from Croatia. J Clin Microbiol 47:3348–3349PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Goic-Barisic I, Towner KJ, Kovacic A, Sisko-Kraljevic K, Tonkic M, Novak A, Punda-Polic V (2011) Outbreak in Croatia caused by a new carbapenem-resistant clone of Acinetobacter baumannii producing OXA-72 carbapenemase. J Hosp Infect 77:368–369PubMedCrossRefGoogle Scholar
  21. 21.
    Franolić-Kukina I, Bedenić B, Budimir A, Herljević Z, Vraneš J, Higgins PG (2011) Clonal spread of carbapenem-resistant OXA-72-positive Acinetobacter baumannii in a Croatian university hospital. Int J Infect Dis 15:e706–e709PubMedCrossRefGoogle Scholar
  22. 22.
    Schreckenberger PC, Daneshvar MI, Weyant RS, Hollis DG (2003) Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative Gram-negative rods. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH (eds) Manual of Clinical Microbiology, 8th edn. American Society for Microbiology, Washington, D.C, pp 749–779Google Scholar
  23. 23.
    Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332PubMedCrossRefGoogle Scholar
  24. 24.
    Clinical and Laboratory Standards Institute (2013) Performance Standards for Antimicrobial Susceptibility Testing, M100-S23. Wayne, PAGoogle Scholar
  25. 25.
    Corvec S, Caroff N, Espaze E, Giraudeau C, Drugeon H, Reynaud A (2003) AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. J Antimicrob Chemother 52:629–635PubMedCrossRefGoogle Scholar
  26. 26.
    Marchiaro P, Mussi MA, Ballerini V, Pasteran F, Viale AM, Vila AJ, Limansky AS (2005) Sensitive EDTA-based microbiological assays for detection of metallo-beta-lactamases in nonfermentative Gram-negative bacteria. J Clin Microbiol 43:5648–5652PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281PubMedCrossRefGoogle Scholar
  28. 28.
    Arlet G, Brami G, Decre D, Flippo A, Gaillot O, Lagrange PH, Philippon A (1995) Molecular characterization by PCR restriction fragment polymorphism of TEM β-lactamases. FEMS Microbiol Lett 134:203–208PubMedGoogle Scholar
  29. 29.
    Lee K, Jum JH, Yong D, Lee HM, Kim HD, Docquier JD, Rossolini GM, Chong Y (2005) Novel acquired metallo-β-lactamase gene, bla (SIM-1) in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 49:4485–4491PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM (2006) Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27(4):351–353PubMedCrossRefGoogle Scholar
  31. 31.
    Turton JF, Gabriel SN, Valderrey C, Kaufmann ME, Pitt TL (2007) Use of sequence based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumannii. Clin Microbiol Infect 13:807–815PubMedCrossRefGoogle Scholar
  32. 32.
    Grundmann HJ, Towner KJ, Dijkshoorn L, Gerner-Smidt P, Maher M, Seifert H, Vaneechoutte M (1997) Multicenter study using standardized protocols and reagents for evaluation of reproducibility of PCR-based fingerprinting of Acinetobacter spp. J Clin Microbiol 35:3071–3077PubMedCentralPubMedGoogle Scholar
  33. 33.
    Spence RP, Towner KJ, Henwood CJ, James D, Woodford N, Livermore DM (2002) Population structure and antibiotic resistance of Acinetobacter DNA group 2 and 13TU isolates from hospitals in the UK. J Med Microbiol 51:1107–1112PubMedGoogle Scholar
  34. 34.
    Towner KJ, Levi K, Vlassiadi M, Steering Group ARPAC (2008) Genetic diversity of carbapenem-resistant isolates of Acinetobacter baumannii in Europe. Clin Microbiol Infect 14:16–167CrossRefGoogle Scholar
  35. 35.
    Diancourt L, Passet V, Nemec A, Dijkshoorn L, Brisse S (2010) The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS ONE 5:e10034PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Karageorgopoulos DE, Falagas ME (2008) Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis 8:751–762PubMedCrossRefGoogle Scholar
  37. 37.
    Livermore DM, Walsh TR, Toleman M, Woodford N (2011) Balkan NDM-1: escape or transplant? Lancet Infect Dis 11:164PubMedCrossRefGoogle Scholar
  38. 38.
    Karah N, Sundsfjord A, Towner K, Samuelsen Ø (2012) Insights into the global molecular epidemiology of carbapenem non-susceptible clones of Acinetobacter baumannii. Drug Resist Updat 15:237–247PubMedCrossRefGoogle Scholar
  39. 39.
    Corvec S, Poirel L, Naas T, Drugeon H, Nordmann P (2007) Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-23 in Acinetobacter baumannii. Antimicrob Agents Chemother 51:1530–1533PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Nemec A, Krízová L, Maixnerová M, Diancourt L, van der Reijden TJ, Brisse S, van den Broek P, Dijkshoorn L (2008) Emergence of carbapenem resistance in Acinetobacter baumannii in the Czech Republic is associated with the spread of multidrug-resistant strains of European clone II. J Antimicrob Chemother 62:484–489PubMedCrossRefGoogle Scholar
  41. 41.
    D’Arezzo S, Capone A, Petrosillo N, Visca P, GRAB (2009) Epidemic multidrug-resistant Acinetobacter baumannii related to European clonal types I and II in Rome (Italy). Clin Microbiol Infect 15:347–357PubMedCrossRefGoogle Scholar
  42. 42.
    D’Arezzo S, Principe L, Capone A, Petrosillo N, Petrucca A, Visca P (2011) Changing carbapenemase gene pattern in an epidemic multidrug-resistant Acinetobacter baumannii lineage causing multiple outbreaks in central Italy. J Antimicrob Chemother 66:54–61PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Vranić-Ladavac
    • 1
  • B. Bedenić
    • 2
    Email author
  • F. Minandri
    • 3
  • M. Ištok
    • 4
  • Z. Bošnjak
    • 5
  • S. Frančula-Zaninović
    • 6
  • R. Ladavac
    • 7
  • P. Visca
    • 3
    Email author
  1. 1.County of Istria Public Health InstitutePulaCroatia
  2. 2.Department of MicrobiologySchool of Medicine, University of Zagreb, and Clinical Hospital Centre ZagrebZagrebCroatia
  3. 3.Department of SciencesRoma Tre UniversityRomeItaly
  4. 4.Faculty for Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia
  5. 5.Clinical Hospital Centre ZagrebZagrebCroatia
  6. 6.Health Center ZagrebZagrebCroatia
  7. 7.General Hospital PulaPulaCroatia

Personalised recommendations