Determinants of virulence of influenza A virus

  • E. J. A. Schrauwen
  • M. de Graaf
  • S. Herfst
  • G. F. Rimmelzwaan
  • A. D. M. E. Osterhaus
  • R. A. M. Fouchier
Review

Abstract

Influenza A viruses cause yearly seasonal epidemics and occasional global pandemics in humans. In the last century, four human influenza A virus pandemics have occurred. Occasionally, influenza A viruses that circulate in other species cross the species barrier and infect humans. Virus reassortment (i.e. mixing of gene segments of multiple viruses) and the accumulation of mutations contribute to the emergence of new influenza A virus variants. Fortunately, most of these variants do not have the ability to spread among humans and subsequently cause a pandemic. In this review, we focus on the threat of animal influenza A viruses which have shown the ability to infect humans. In addition, genetic factors which could alter the virulence of influenza A viruses are discussed. The identification and characterisation of these factors may provide insights into genetic traits which change virulence and help us to understand which genetic determinants are of importance for the pandemic potential of animal influenza A viruses.

References

  1. 1.
    Palese P, Shaw ML (2007) Orthomyxoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, p 1647–1690Google Scholar
  2. 2.
    Wise HM, Hutchinson EC, Jagger BW, Stuart AD, Kang ZH, Robb N, Schwartzman LM, Kash JC, Fodor E, Firth AE, Gog JR, Taubenberger JK, Digard P (2012) Identification of a novel splice variant form of the influenza a virus m2 ion channel with an antigenically distinct ectodomain. PLoS Pathog 8(11):e1002998PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Wise HM, Foeglein A, Sun J, Dalton RM, Patel S, Howard W, Anderson EC, Barclay WS, Digard P (2009) A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol 83(16):8021–8031PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, Dunfee RL, Schwartzman LM, Ozinsky A, Bell GL, Dalton RM, Lo A, Efstathiou S, Atkins JF, Firth AE, Taubenberger JK, Digard P (2012) An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337(6091):199–204PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Muramoto Y, Noda T, Kawakami E, Akkina R, Kawaoka Y (2013) Identification of novel influenza A virus proteins translated from PA mRNA. J Virol 87(5):2455–2462PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Bertram S, Glowacka I, Steffen I, Kühl A, Pöhlmann S (2010) Novel insights into proteolytic cleavage of influenza virus hemagglutinin. Rev Med Virol 20(5):298–310PubMedCrossRefGoogle Scholar
  7. 7.
    van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2006) H5N1 virus attachment to lower respiratory tract. Science 312(5772):399PubMedCrossRefGoogle Scholar
  8. 8.
    García-Sastre A, Egorov A, Matassov D, Brandt S, Levy DE, Durbin JE, Palese P, Muster T (1998) Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252(2):324–330PubMedCrossRefGoogle Scholar
  9. 9.
    Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305(5682):371–376PubMedCrossRefGoogle Scholar
  10. 10.
    Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72(9):7367–7373PubMedCentralPubMedGoogle Scholar
  11. 11.
    Falchi A, Arena C, Andreoletti L, Jacques J, Leveque N, Blanchon T, Lina B, Turbelin C, Dorléans Y, Flahault A, Amoros JP, Spadoni G, Agostini F, Varesi L (2008) Dual infections by influenza A/H3N2 and B viruses and by influenza A/H3N2 and A/H1N1 viruses during winter 2007, Corsica Island, France. J Clin Virol 41(2):148–151PubMedCrossRefGoogle Scholar
  12. 12.
    Gregory V, Bennett M, Orkhan MH, Al Hajjar S, Varsano N, Mendelson E, Zambon M, Ellis J, Hay A, Lin YP (2002) Emergence of influenza A H1N2 reassortant viruses in the human population during 2001. Virology 300(1):1–7PubMedCrossRefGoogle Scholar
  13. 13.
    Holmes EC, Ghedin E, Miller N, Taylor J, Bao Y, St George K, Grenfell BT, Salzberg SL, Fraser CM, Lipman DJ, Taubenberger JK (2005) Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol 3(9):e300PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Taubenberger JK, Morens DM (2006) 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 12(1):15–22PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Scholtissek C, Rohde W, Von Hoyningen V, Rott R (1978) On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87(1):13–20PubMedCrossRefGoogle Scholar
  16. 16.
    Neumann G, Noda T, Kawaoka Y (2009) Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459(7249):931–939PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    de Jong JC, Claas EC, Osterhaus AD, Webster RG, Lim WL (1997) A pandemic warning? Nature 389(6651):554PubMedCrossRefGoogle Scholar
  18. 18.
    World Health Organization (WHO) (2013) Cumulative number of confirmed human cases for avian influenzaA(H5N1) reported to WHO, 2003–2013. Available online at: http://www.who.int/influenza/human_animal_interface/EN_GIP_20130705CumulativeNumberH5N1cases_2.pdf. Cited 05 July 2013
  19. 19.
    Wang H, Feng Z, Shu Y, Yu H, Zhou L, Zu R, Huai Y, Dong J, Bao C, Wen L, Wang H, Yang P, Zhao W, Dong L, Zhou M, Liao Q, Yang H, Wang M, Lu X, Shi Z, Wang W, Gu L, Zhu F, Li Q, Yin W, Yang W, Li D, Uyeki TM, Wang Y (2008) Probable limited person-to-person transmission of highly pathogenic avian influenza A (H5N1) virus in China. Lancet 371(9622):1427–1434PubMedCrossRefGoogle Scholar
  20. 20.
    Nidom CA, Takano R, Yamada S, Sakai-Tagawa Y, Daulay S, Aswadi D, Suzuki T, Suzuki Y, Shinya K, Iwatsuki-Horimoto K, Muramoto Y, Kawaoka Y (2010) Influenza A (H5N1) viruses from pigs, Indonesia. Emerg Infect Dis 16(10):1515–1523PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, Kuiken T, Rimmelzwaan GF, Schutten M, Van Doornum GJ, Koch G, Bosman A, Koopmans M, Osterhaus AD (2004) Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101(5):1356–1361PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    de Wit E, Fouchier RA (2008) Emerging influenza. J Clin Virol 41(1):1–6PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    World Health Organization (WHO) (2013) Human infection with avian influenza A(H7N9) virus—update. Available online at: http://www.who.int/csr/don/2013_08_11/en/index.html
  24. 24.
    Peiris M, Yuen KY, Leung CW, Chan KH, Ip PL, Lai RW, Orr WK, Shortridge KF (1999) Human infection with influenza H9N2. Lancet 354(9182):916–917PubMedCrossRefGoogle Scholar
  25. 25.
    Guo Y, Dong J, Wang M, Zhang Y, Guo J, Wu K (2001) Characterization of hemagglutinin gene of influenza A virus subtype H9N2. Chin Med J (Engl) 114(1):76–79Google Scholar
  26. 26.
    Yu H, Zhou YJ, Li GX, Ma JH, Yan LP, Wang B, Yang FR, Huang M, Tong GZ (2011) Genetic diversity of H9N2 influenza viruses from pigs in China: a potential threat to human health? Vet Microbiol 149(1–2):254–261PubMedCrossRefGoogle Scholar
  27. 27.
    Matrosovich MN, Krauss S, Webster RG (2001) H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281(2):156–162PubMedCrossRefGoogle Scholar
  28. 28.
    Yuan J, Zhang L, Kan X, Jiang L, Yang J, Guo Z, Ren Q (2013) Origin and molecular characteristics of a novel 2013 avian influenza A(H6N1) virus causing human infection in Taiwan. Clin Infect Dis (in press)Google Scholar
  29. 29.
    Gillim-Ross L, Santos C, Chen Z, Aspelund A, Yang CF, Ye D, Jin H, Kemble G, Subbarao K (2008) Avian influenza h6 viruses productively infect and cause illness in mice and ferrets. J Virol 82(21):10854–10863PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Hoffmann E, Stech J, Leneva I, Krauss S, Scholtissek C, Chin PS, Peiris M, Shortridge KF, Webster RG (2000) Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? J Virol 74(14):6309–6315PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Munster VJ, Baas C, Lexmond P, Waldenström J, Wallensten A, Fransson T, Rimmelzwaan GF, Beyer WE, Schutten M, Olsen B, Osterhaus AD, Fouchier RA (2007) Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 3(5):e61PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Krauss S, Obert CA, Franks J, Walker D, Jones K, Seiler P, Niles L, Pryor SP, Obenauer JC, Naeve CW, Widjaja L, Webby RJ, Webster RG (2007) Influenza in migratory birds and evidence of limited intercontinental virus exchange. PLoS Pathog 3(11):e167PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Pearce MB, Jayaraman A, Pappas C, Belser JA, Zeng H, Gustin KM, Maines TR, Sun X, Raman R, Cox NJ, Sasisekharan R, Katz JM, Tumpey TM (2012) Pathogenesis and transmission of swine origin A(H3N2)v influenza viruses in ferrets. Proc Natl Acad Sci U S A 109(10):3944–3949PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Shu B, Garten R, Emery S, Balish A, Cooper L, Sessions W, Deyde V, Smith C, Berman L, Klimov A, Lindstrom S, Xu X (2012) Genetic analysis and antigenic characterization of swine origin influenza viruses isolated from humans in the United States, 1990–2010. Virology 422(1):151–160PubMedCrossRefGoogle Scholar
  35. 35.
    Schrauwen EJ, Herfst S, Chutinimitkul S, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Kuiken T, Fouchier RA (2011) Possible increased pathogenicity of pandemic (H1N1) 2009 influenza virus upon reassortment. Emerg Infect Dis 17(2):200–208PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Angel M, Kimble JB, Pena L, Wan H, Perez DR (2013) In vivo selection of H1N2 influenza virus reassortants in the ferret model. J Virol 87(6):3277–3283PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lycett SJ, Baillie G, Coulter E, Bhatt S, Kellam P, McCauley JW, Wood JL, Brown IH, Pybus OG, Leigh Brown AJ; Combating Swine Influenza Initiative-COSI Consortium (2012) Estimating reassortment rates in co-circulating Eurasian swine influenza viruses. J Gen Virol 93(Pt 11):2326–2336PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Glaser L, Stevens J, Zamarin D, Wilson IA, García-Sastre A, Tumpey TM, Basler CF, Taubenberger JK, Palese P (2005) A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J Virol 79(17):11533–11536PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Tumpey TM, Maines TR, Van Hoeven N, Glaser L, Solórzano A, Pappas C, Cox NJ, Swayne DE, Palese P, Katz JM, García-Sastre A (2007) A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315(5812):655–659PubMedCrossRefGoogle Scholar
  40. 40.
    Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli I, Kawaoka Y (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74(18):8502–8512PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Chutinimitkul S, van Riel D, Munster VJ, van den Brand JM, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA, de Wit E (2010) In vitro assessment of attachment pattern and replication efficiency of H5N1 influenza A viruses with altered receptor specificity. J Virol 84(13):6825–6833PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Stevens J, Blixt O, Tumpey TM, Taubenberger JK, Paulson JC, Wilson IA (2006) Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312(5772):404–410PubMedCrossRefGoogle Scholar
  43. 43.
    Chen H, Bright RA, Subbarao K, Smith C, Cox NJ, Katz JM, Matsuoka Y (2007) Polygenic virulence factors involved in pathogenesis of 1997 Hong Kong H5N1 influenza viruses in mice. Virus Res 128(1–2):159–163PubMedCrossRefGoogle Scholar
  44. 44.
    de Wit E, Munster VJ, van Riel D, Beyer WE, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA (2010) Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host. J Virol 84(3):1597–1606PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Garten W, Bosch FX, Linder D, Rott R, Klenk HD (1981) Proteolytic activation of the influenza virus hemagglutinin: The structure of the cleavage site and the enzymes involved in cleavage. Virology 115(2):361–374PubMedCrossRefGoogle Scholar
  46. 46.
    Munster VJ, Schrauwen EJ, de Wit E, van den Brand JM, Bestebroer TM, Herfst S, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2010) Insertion of a multibasic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype. J Virol 84(16):7953–7960PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Veits J, Weber S, Stech O, Breithaupt A, Gräber M, Gohrbandt S, Bogs J, Hundt J, Teifke JP, Mettenleiter TC, Stech J (2012) Avian influenza virus hemagglutinins H2, H4, H8, and H14 support a highly pathogenic phenotype. Proc Natl Acad Sci U S A 109(7):2579–2584PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Rimmelzwaan GF, Kuiken T, van Amerongen G, Bestebroer TM, Fouchier RA, Osterhaus AD (2001) Pathogenesis of influenza A (H5N1) virus infection in a primate model. J Virol 75(14):6687–6691PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Hatta M, Gao P, Halfmann P, Kawaoka Y (2001) Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293(5536):1840–1842PubMedCrossRefGoogle Scholar
  50. 50.
    Bogs J, Veits J, Gohrbandt S, Hundt J, Stech O, Breithaupt A, Teifke JP, Mettenleiter TC, Stech J (2010) Highly pathogenic H5N1 influenza viruses carry virulence determinants beyond the polybasic hemagglutinin cleavage site. PLoS One 5(7):e11826PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Schrauwen EJ, Bestebroer TM, Munster VJ, de Wit E, Herfst S, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2011) Insertion of a multibasic cleavage site in the haemagglutinin of human influenza H3N2 virus does not increase pathogenicity in ferrets. J Gen Virol 92(Pt 6):1410–1415PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Schrauwen EJ, Herfst S, Leijten LM, van Run P, Bestebroer TM, Linster M, Bodewes R, Kreijtz JH, Rimmelzwaan GF, Osterhaus AD, Fouchier RA, Kuiken T, van Riel D (2012) The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets. J Virol 86(7):3975–3984PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Subbarao EK, London W, Murphy BR (1993) A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol 67(4):1761–1764PubMedCentralPubMedGoogle Scholar
  54. 54.
    Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, Matsuoka Y, Yu K (2005) Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol 79(18):12058–12064PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    de Jong MD, Simmons CP, Thanh TT, Hien VM, Smith GJ, Chau TN, Hoang DM, Chau NV, Khanh TH, Dong VC, Qui PT, Cam BV, Ha do Q, Guan Y, Peiris JS, Chinh NT, Hien TT, Farrar J (2006) Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat Med 12(10):1203–1207PubMedCrossRefGoogle Scholar
  56. 56.
    Steel J, Lowen AC, Mubareka S, Palese P (2009) Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog 5(1):e1000252PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Gabriel G, Herwig A, Klenk HD (2008) Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog 4(2):e11PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Herfst S, Chutinimitkul S, Ye J, de Wit E, Munster VJ, Schrauwen EJ, Bestebroer TM, Jonges M, Meijer A, Koopmans M, Rimmelzwaan GF, Osterhaus AD, Perez DR, Fouchier RA (2010) Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission. J Virol 84(8):3752–3758PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Mehle A, Doudna JA (2009) Adaptive strategies of the influenza virus polymerase for replication in humans. Proc Natl Acad Sci U S A 106(50):21312–21316PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Mänz B, Schwemmle M, Brunotte L (2013) Adaptation of avian influenza a virus polymerase in mammals to overcome the host species barrier. J Virol 87(13):7200–7209PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, Basta S, O’Neill R, Schickli J, Palese P, Henklein P, Bennink JR, Yewdell JW (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7(12):1306–1312PubMedCrossRefGoogle Scholar
  62. 62.
    McAuley JL, Hornung F, Boyd KL, Smith AM, McKeon R, Bennink J, Yewdell JW, McCullers JA (2007) Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2(4):240–249PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P (2007) A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog 3(10):1414–1421PubMedCrossRefGoogle Scholar
  64. 64.
    McAuley JL, Chipuk JE, Boyd KL, Van De Velde N, Green DR, McCullers JA (2010) PB1-F2 proteins from H5N1 and 20 century pandemic influenza viruses cause immunopathology. PLoS Pathog 6(7):e1001014PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Varga ZT, Ramos I, Hai R, Schmolke M, García-Sastre A, Fernandez-Sesma A, Palese P (2011) The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein. PLoS Pathog 7(6):e1002067PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Hai R, Schmolke M, Varga ZT, Manicassamy B, Wang TT, Belser JA, Pearce MB, García-Sastre A, Tumpey TM, Palese P (2010) PB1-F2 expression by the 2009 pandemic H1N1 influenza virus has minimal impact on virulence in animal models. J Virol 84(9):4442–4450PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Ozawa M, Basnet S, Burley LM, Neumann G, Hatta M, Kawaoka Y (2011) Impact of amino acid mutations in PB2, PB1-F2, and NS1 on the replication and pathogenicity of pandemic (H1N1) 2009 influenza viruses. J Virol 85(9):4596–4601PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Shi M, Jagger BW, Wise HM, Digard P, Holmes EC, Taubenberger JK (2012) Evolutionary conservation of the PA-X open reading frame in segment 3 of influenza A virus. J Virol 86(22):12411–12413PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Hale BG, Randall RE, Ortín J, Jackson D (2008) The multifunctional NS1 protein of influenza A viruses. J Gen Virol 89(Pt 10):2359–2376PubMedCrossRefGoogle Scholar
  70. 70.
    Peiris JS, Yu WC, Leung CW, Cheung CY, Ng WF, Nicholls JM, Ng TK, Chan KH, Lai ST, Lim WL, Yuen KY, Guan Y (2004) Re-emergence of fatal human influenza A subtype H5N1 disease. Lancet 363(9409):617–619PubMedCrossRefGoogle Scholar
  71. 71.
    Seo SH, Hoffmann E, Webster RG (2002) Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8(9):950–954PubMedCrossRefGoogle Scholar
  72. 72.
    Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW (2006) Large-scale sequence analysis of avian influenza isolates. Science 311(5767):1576–1580PubMedCrossRefGoogle Scholar
  73. 73.
    Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA (2008) A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci U S A 105(11):4381–4386PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Hale BG, Steel J, Medina RA, Manicassamy B, Ye J, Hickman D, Hai R, Schmolke M, Lowen AC, Perez DR, García-Sastre A (2010) Inefficient control of host gene expression by the 2009 pandemic H1N1 influenza A virus NS1 protein. J Virol 84(14):6909–6922PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Wagner R, Matrosovich M, Klenk HD (2002) Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 12(3):159–166PubMedCrossRefGoogle Scholar
  76. 76.
    Goto H, Kawaoka Y (1998) A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc Natl Acad Sci U S A 95(17):10224–10228PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Tumpey TM, Basler CF, Aguilar PV, Zeng H, Solórzano A, Swayne DE, Cox NJ, Katz JM, Taubenberger JK, Palese P, García-Sastre A (2005) Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310(5745):77–80PubMedCrossRefGoogle Scholar
  78. 78.
    Li J, zu Dohna H, Anchell NL, Adams SC, Dao NT, Xing Z, Cardona CJ (2010) Adaptation and transmission of a duck-origin avian influenza virus in poultry species. Virus Res 147(1):40–46PubMedCrossRefGoogle Scholar
  79. 79.
    Munier S, Larcher T, Cormier-Aline F, Soubieux D, Su B, Guigand L, Labrosse B, Cherel Y, Quéré P, Marc D, Naffakh N (2010) A genetically engineered waterfowl influenza virus with a deletion in the stalk of the neuraminidase has increased virulence for chickens. J Virol 84(2):940–952PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Sorrell EM, Song H, Pena L, Perez DR (2010) A 27-amino-acid deletion in the neuraminidase stalk supports replication of an avian H2N2 influenza A virus in the respiratory tract of chickens. J Virol 84(22):11831–11840PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Els MC, Air GM, Murti KG, Webster RG, Laver WG (1985) An 18-amino acid deletion in an influenza neuraminidase. Virology 142(2):241–247PubMedCrossRefGoogle Scholar
  82. 82.
    Bouvier NM, Lowen AC (2010) Animal models for influenza virus pathogenesis and transmission. Viruses 2(8):1530–1563PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    van Riel D, Munster VJ, de Wit E, Rimmelzwaan GF, Fouchier RA, Osterhaus AD, Kuiken T (2007) Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am J Pathol 171(4):1215–1223PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Xu Q, Wang W, Cheng X, Zengel J, Jin H (2010) Influenza H1N1 A/Solomon Island/3/06 virus receptor binding specificity correlates with virus pathogenicity, antigenicity, and immunogenicity in ferrets. J Virol 84(10):4936–4945PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Herlocher ML, Elias S, Truscon R, Harrison S, Mindell D, Simon C, Monto AS (2001) Ferrets as a transmission model for influenza: sequence changes in HA1 of type A (H3N2) virus. J Infect Dis 184(5):542–546PubMedCrossRefGoogle Scholar
  86. 86.
    Munster VJ, de Wit E, van den Brand JM, Herfst S, Schrauwen EJ, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus AD, Fouchier RA (2009) Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets. Science 325(5939):481–483PubMedGoogle Scholar
  87. 87.
    Van Hoeven N, Pappas C, Belser JA, Maines TR, Zeng H, García-Sastre A, Sasisekharan R, Katz JM, Tumpey TM (2009) Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc Natl Acad Sci U S A 106(9):3366–3371PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Pappas C, Viswanathan K, Chandrasekaran A, Raman R, Katz JM, Sasisekharan R, Tumpey TM (2010) Receptor specificity and transmission of H2N2 subtype viruses isolated from the pandemic of 1957. PLoS One 5(6):e11158PubMedCentralPubMedCrossRefGoogle Scholar
  89. 89.
    Sorrell EM, Wan H, Araya Y, Song H, Perez DR (2009) Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus. Proc Natl Acad Sci U S A 106(18):7565–7570PubMedCentralPubMedCrossRefGoogle Scholar
  90. 90.
    Maines TR, Chen LM, Van Hoeven N, Tumpey TM, Blixt O, Belser JA, Gustin KM, Pearce MB, Pappas C, Stevens J, Cox NJ, Paulson JC, Raman R, Sasisekharan R, Katz JM, Donis RO (2011) Effect of receptor binding domain mutations on receptor binding and transmissibility of avian influenza H5N1 viruses. Virology 413(1):139–147PubMedCrossRefGoogle Scholar
  91. 91.
    Jackson S, Van Hoeven N, Chen LM, Maines TR, Cox NJ, Katz JM, Donis RO (2009) Reassortment between avian H5N1 and human H3N2 influenza viruses in ferrets: a public health risk assessment. J Virol 83(16):8131–8140PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Schrauwen EJ, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA, Herfst S (2013) Reassortment between Avian H5N1 and human influenza viruses is mainly restricted to the matrix and neuraminidase gene segments. PLoS One 8(3):e59889PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Herfst S, Schrauwen EJ, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2012) Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336(6088):1534–1541PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang Y, Zhang Q, Kong H, Jiang Y, Gao Y, Deng G, Shi J, Tian G, Liu L, Liu J, Guan Y, Bu Z, Chen H (2013) H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science 340(6139):1459–1463PubMedCrossRefGoogle Scholar
  95. 95.
    Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486(7403):420–428PubMedCentralPubMedGoogle Scholar
  96. 96.
    Qi X, Qian YH, Bao CJ, Guo XL, Cui LB, Tang FY, Ji H, Huang Y, Cai PQ, Lu B, Xu K, Shi C, Zhu FC, Zhou MH, Wang H (2013) Probable person to person transmission of novel avian influenza A (H7N9) virus in Eastern China, 2013: epidemiological investigation. BMJ 347:f4752PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Zhu H, Wang D, Kelvin DJ, Li L, Zheng Z, Yoon SW, Wong SS, Farooqui A, Wang J, Banner D, Chen R, Zheng R, Zhou J, Zhang Y, Hong W, Dong W, Cai Q, Roehrl MH, Huang SS, Kelvin AA, Yao T, Zhou B, Chen X, Leung GM, Poon LL, Webster RG, Webby RJ, Peiris JS, Guan Y, Shu Y (2013) Infectivity, transmission, and pathology of human-isolated H7N9 Influenza virus in ferrets and pigs. Science 341(6142):183–186PubMedCrossRefGoogle Scholar
  98. 98.
    Watanabe T, Kiso M, Fukuyama S, Nakajima N, Imai M, Yamada S, Murakami S, Yamayoshi S, Iwatsuki-Horimoto K, Sakoda Y, Takashita E, McBride R, Noda T, Hatta M, Imai H, Zhao D, Kishida N, Shirakura M, de Vries RP, Shichinohe S, Okamatsu M, Tamura T, Tomita Y, Fujimoto N, Goto K, Katsura H, Kawakami E, Ishikawa I, Watanabe S, Ito M, Sakai-Tagawa Y, Sugita Y, Uraki R, Yamaji R, Eisfeld AJ, Zhong G, Fan S, Ping J, Maher EA, Hanson A, Uchida Y, Saito T, Ozawa M, Neumann G, Kida H, Odagiri T, Paulson JC, Hasegawa H, Tashiro M, Kawaoka Y (2013) Characterization of H7N9 influenza A viruses isolated from humans. Nature (in press)Google Scholar
  99. 99.
    Belser JA, Gustin KM, Pearce MB, Maines TR, Zeng H, Pappas C, Sun X, Carney PJ, Villanueva JM, Stevens J, Katz JM, Tumpey TM (2013) Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature (in press)Google Scholar
  100. 100.
    Richard M, Schrauwen EJ, de Graaf M, Bestebroer TM, Spronken MI, van Boheemen S, de Meulder D, Lexmond P, Linster M, Herfst S, Smith DJ, van den Brand JM, Burke DF, Kuiken T, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2013) Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature (in press)Google Scholar
  101. 101.
    Sorrell EM, Schrauwen EJ, Linster M, De Graaf M, Herfst S, Fouchier RA (2011) Predicting ‘airborne’ influenza viruses: (trans-) mission impossible? Curr Opin Virol 1(6):635–642PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Imai M, Kawaoka Y (2012) The role of receptor binding specificity in interspecies transmission of influenza viruses. Curr Opin Virol 2(2):160–167PubMedCrossRefGoogle Scholar
  103. 103.
    Xu R, Zhu X, McBride R, Nycholat CM, Yu W, Paulson JC, Wilson IA (2012) Functional balance of the hemagglutinin and neuraminidase activities accompanies the emergence of the 2009 H1N1 influenza pandemic. J Virol 86(17):9221–9232PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E. J. A. Schrauwen
    • 1
  • M. de Graaf
    • 1
  • S. Herfst
    • 1
  • G. F. Rimmelzwaan
    • 1
  • A. D. M. E. Osterhaus
    • 1
  • R. A. M. Fouchier
    • 1
  1. 1.Department of Viroscience, Postgraduate School Molecular MedicineErasmus Medical CenterRotterdamThe Netherlands

Personalised recommendations