Skip to main content
Log in

Accumulation of carbapenem resistance mechanisms in VIM-2-producing Pseudomonas aeruginosa under selective pressure

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa has the potential to achieve resistance to carbapenems via the acquisition of carbapenemase-encoding genes, the downregulation of the OprD porin, the overexpression of efflux systems and the overproduction of cephalosporinases. One hundred and fifty carbapenem-non-susceptible isolates from 2008 to 2010 were screened for carbapenemase production, OprD porin loss, efflux pumps overexpression and inducible AmpC beta-lactamase production. For comparison reasons, the presence of the same mechanisms was also assessed in a previous collection of 30 carbapenem-non-susceptible P. aeruginosa isolated between 2003 and 2005. Results showed the accumulation of various resistance mechanisms among VIM-2 producers isolated between 2008 and 2010 with a parallel considerable increase in imipenem MIC90 and the geometric mean of the MIC values of imipenem and meropenem between the two study groups. The accumulation of carbapenem resistance mechanisms highlights the potential of this formidable pathogen for evolutionary success under antibiotic selective pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Meletis G, Exindari M, Vavatsi N, Sofianou D, Diza E (2012) Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia 16:303–307

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Poole K (2011) Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Quale J, Bratu S, Gupta J, Landman D (2006) Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 50:1633–1641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Clinical and Laboratory Standards Institute (2007) Performance standards for antimicrobial susceptibility testing: seventeenth informational supplement M100-S17. CLSI, Wayne

    Google Scholar 

  5. European Committee on Antimicrobial Susceptibility Testing (2013) Breakpoint tables for interpretation of MICs and zone diameters, version 3.0 January 2013. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/EUCAST_Breakpoint_table_v_3.0.pdf

  6. Zarkotou O, Pournaras S, Altouvas G, Pitiriga V, Tziraki M, Mamali V, Themeli-Digalaki K, Tsakris A (2012) Comparative evaluation of tigecycline susceptibility testing methods for expanded-spectrum cephalosporin- and carbapenem-resistant gram-negative pathogens. J Clin Microbiol 50:3747–3750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lee K, Lim YS, Yong D, Yum JH, Chong Y (2003) Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 41:4623–4629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y (2006) Detection of extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:2990–2995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Maniati M, Ikonomidis A, Mantzana P, Daponte A, Maniatis AN, Pournaras S (2007) A highly carbapenem-resistant Pseudomonas aeruginosa isolate with a novel blaVIM-4/blaP1b integron overexpresses two efflux pumps and lacks OprD. J Antimicrob Chemother 60:132–135

    Article  CAS  PubMed  Google Scholar 

  10. Pournaras S, Maniati M, Spanakis N, Ikonomidis A, Tassios PT, Tsakris A, Legakis NJ, Maniatis AN (2005) Spread of efflux pump-overexpressing, non-metallo-beta-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. J Antimicrob Chemother 56:761–764

    Article  CAS  PubMed  Google Scholar 

  11. Dunne WM Jr, Hardin DJ (2005) Use of several inducer and substrate antibiotic combinations in a disk approximation assay format to screen for AmpC induction in patient isolates of Pseudomonas aeruginosa, Enterobacter spp., Citrobacter spp., and Serratia spp. J Clin Microbiol 43:5945–5949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Wolska K, Szweda P (2008) A comparative evaluation of PCR ribotyping and ERIC PCR for determining the diversity of clinical Pseudomonas aeruginosa strains. Pol J Microbiol 57:157–163

    CAS  PubMed  Google Scholar 

  13. Miyakis S, Pefanis A, Tsakris A (2011) The challenges of antimicrobial drug resistance in Greece. Clin Infect Dis 53:177–184

    Article  PubMed  Google Scholar 

  14. Souli M, Galani I, Giamarellou H (2008) Emergence of extensively drug-resistant and pandrug-resistant Gram-negative bacilli in Europe. Euro Surveill 13.pii:19045

    Google Scholar 

  15. Mavroidi A, Tsakris A, Tzelepi E, Pournaras S, Loukova V, Tzouvelekis LS (2000) Carbapenem-hydrolysing VIM-2 metallo-beta-lactamase in Pseudomonas aeruginosa from Greece. J Antimicrob Chemother 46:1041–1042

    Article  CAS  PubMed  Google Scholar 

  16. Giakkoupi P, Petrikkos G, Tzouvelekis LS, Tsonas S, Legakis NJ, Vatopoulos AC, WHONET Greece Study Group (2003) Spread of integron-associated VIM-type metallo-beta-lactamase genes among imipenem-nonsusceptible Pseudomonas aeruginosa strains in Greek hospitals. J Clin Microbiol 41:822–825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Meletis G, Tzampaz E, Protonotariou E, Sofianou D (2010) Emergence of Klebsiella pneumoniae carrying blaVIM and blaKPC genes. Hippokratia 14:139–140

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Giakkoupi P, Pappa O, Polemis M, Vatopoulos AC, Miriagou V, Zioga A, Papagiannitsis CC, Tzouvelekis LS (2009) Emerging Klebsiella pneumoniae isolates coproducing KPC-2 and VIM-1 carbapenemases. Antimicrob Agents Chemother 53:4048–4050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Martínez T, Vázquez GJ, Aquino EE, Ramírez-Ronda R, Robledo IE (2012) First report of a Pseudomonas aeruginosa clinical isolate co-harbouring KPC-2 and IMP-18 carbapenemases. Int J Antimicrob Agents 39:542–543

    Article  PubMed  Google Scholar 

  20. Correa A, Montealegre MC, Mojica MF, Maya JJ, Rojas LJ, De La Cadena EP (2012) First report of a Pseudomonas aeruginosa isolate coharboring KPC and VIM carbapenemases. Antimicrob Agents Chemother 56:5422–5423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Woodford N, Turton JF, Livermore DM (2011) Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35:736–755

    Article  CAS  PubMed  Google Scholar 

  22. Rodríguez-Martínez JM, Poirel L, Nordmann P (2009) Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53:4783–4788

    Article  PubMed Central  PubMed  Google Scholar 

  23. El Amin N, Giske CG, Jalal S, Keijser B, Kronvall G, Wretlind B (2005) Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS 113:187–196

    Article  PubMed  Google Scholar 

  24. Farra A, Islam S, Strålfors A, Sörberg M, Wretlind B (2008) Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. Int J Antimicrob Agents 31:427–433

    Article  CAS  PubMed  Google Scholar 

  25. Moya B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, Oliver A (2012) Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother 56:4771–4778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Hocquet D, Berthelot P, Roussel-Delvallez M, Favre R, Jeannot K, Bajolet O, Marty N, Grattard F, Mariani-Kurkdjian P, Bingen E, Husson MO, Couetdic G, Plésiat P (2007) Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob Agents Chemother 51:3531–3536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Meletis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meletis, G., Vavatsi, N., Exindari, M. et al. Accumulation of carbapenem resistance mechanisms in VIM-2-producing Pseudomonas aeruginosa under selective pressure. Eur J Clin Microbiol Infect Dis 33, 253–258 (2014). https://doi.org/10.1007/s10096-013-1952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1952-3

Keywords

Navigation