Skip to main content
Log in

Trends in the susceptibility of methicillin-resistant Staphylococcus aureus to nine antimicrobial agents, including ceftobiprole, nemonoxacin, and tyrothricin: results from the Tigecycline In Vitro Surveillance in Taiwan (TIST) study, 2006–2010

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

This study investigated the in vitro susceptibilities of methicillin-resistant Staphylococcus aureus (MRSA) to nine antimicrobial agents in Taiwan. A total of 1,725 isolates were obtained from 20 hospitals throughout Taiwan from 2006 to 2010. The minimum inhibitory concentrations (MICs) of the nine agents were determined by the agar dilution method. The MICs of mupirocin and tyrothricin were determined for 223 MRSA isolates collected from 2009 to 2010. For vancomycin, 99.7 % were susceptible; however, 30.0 % (n = 517) exhibited MICs of 2 μg/ml and 0.3 % (n = 6) demonstrated intermediate susceptibility (MICs of 4 μg/ml). Nearly all isolates (≥99.9 %) were susceptible to teicoplanin, linezolid, and daptomycin. The MIC90 values were 2 μg/ml for ceftobiprole and 1 μg/ml for nemonoxacin. The MIC90 values of mupirocin and tyrothricin were 0.12 and 4 μg/ml, respectively. MIC creep was noted for daptomycin during this period, but not for vancomycin, teicoplanin, linezolid, or tigecycline. For isolates with vancomycin MICs of 2 μg/ml, the MIC90 values were 2 μg/ml for teicoplanin, 0.5 μg/ml for daptomycin, and 0.5 μg/ml for tigecycline. Those values were four- to eight-fold higher than those among isolates with vancomycin MICs of 0.5 μg/ml (2, 0.06, and 0.12 μg/ml, respectively). Of the nine MRSA isolates exhibiting non-susceptibility to vancomycin (n = 6), teicoplanin (n = 1), daptomycin (n = 2), or tigecycline (n = 1), all had different pulsotypes, indicating the absence of intra-hospital or inter-hospital spread. The presence of a high proportion of MRSA isolates with elevated MICs (2 μg/ml) and MIC creep of daptomycin might alert clinicians on the therapy for serious MRSA infections in Taiwan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tong SY, Chen LF, Fowler VG Jr (2012) Colonization, pathogenicity, host susceptibility, and therapeutics for Staphylococcus aureus: what is the clinical relevance? Semin Immunopathol 34:185–200

    Article  PubMed Central  PubMed  Google Scholar 

  2. Jean SS, Hsueh PR (2011) High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents 37:291–295

    Article  CAS  PubMed  Google Scholar 

  3. Stefani S, Chung DR, Lindsay JA, Friedrich AW, Kearns AM, Westh H, Mackenzie FM (2012) Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonisation of typing methods. Int J Antimicrob Agents 39:273–282

    Article  CAS  PubMed  Google Scholar 

  4. Tseng SH, Lee CM, Lin TY, Chang SC, Chang FY (2011) Emergence and spread of multi-drug resistant organisms: think globally and act locally. J Microbiol Immunol Infect 44:157–165

    Article  PubMed  Google Scholar 

  5. Calfee DP (2012) Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and other Gram-positives in healthcare. Curr Opin Infect Dis 25:385–394

    Article  CAS  PubMed  Google Scholar 

  6. Huang YT, Liao CH, Teng LJ, Hsueh PR (2008) Comparative bactericidal activities of daptomycin, glycopeptides, linezolid and tigecycline against blood isolates of Gram-positive bacteria in Taiwan. Clin Microbiol Infect 14:124–129

    Article  CAS  PubMed  Google Scholar 

  7. Gupta A, Biyani M, Khaira A (2011) Vancomycin nephrotoxicity: myths and facts. Neth J Med 69:379–383

    CAS  PubMed  Google Scholar 

  8. Schilling A, Neuner E, Rehm SJ (2011) Vancomycin: a 50-something-year-old antibiotic we still don’t understand. Cleve Clin J Med 78:465–471

    Article  PubMed  Google Scholar 

  9. Chen YH, Lu PL, Huang CH, Liao CH, Lu CT, Chuang YC, Tsao SM, Chen YS, Liu YC, Chen WY, Jang TN, Lin HC, Chen CM, Shi ZY, Pan SC, Yang JL, Kung HC, Liu CE, Cheng YJ, Liu JW, Sun W, Wang LS, Ko WC, Yu KW, Chiang PC, Lee MH, Lee CM, Hsu GJ, Hsueh PR (2012) Trends in the susceptibility of clinically important resistant bacteria to tigecycline: results from the Tigecycline In Vitro Surveillance in Taiwan study, 2006 to 2010. Antimicrob Agents Chemother 56:1452–1457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hsueh PR (2008) Tigecycline In-vitro Surveillance in Taiwan (TIST). Int J Antimicrob Agents 32(Suppl 3):S173

    Article  CAS  PubMed  Google Scholar 

  11. Tsai HY, Liao CH, Chen YH, Lu PL, Huang CH, Lu CT, Chuang YC, Tsao SM, Chen YS, Liu YC, Chen WY, Jang TN, Lin HC, Chen CM, Shi ZY, Pan SC, Yang JL, Kung HC, Liu CE, Cheng YJ, Liu JW, Sun W, Wang LS, Ko WC, Yu KW, Chiang PC, Lee MH, Lee CM, Hsu GJ, Hsueh PR (2012) Trends in susceptibility of vancomycin-resistant Enterococcus faecium to tigecycline, daptomycin, and linezolid and molecular epidemiology of the isolates: results from the Tigecycline In Vitro Surveillance in Taiwan (TIST) study, 2006 to 2010. Antimicrob Agents Chemother 56:3402–3405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Clinical and Laboratory Standards Institute (CLSI) (2013) Performance standards for antimicrobial susceptibility testing; Twenty-third informational supplement. CLSI document M100-S23. CLSI, Wayne

    Google Scholar 

  13. Liao CH, Lai CC, Chen SY, Huang YT, Hsueh PR (2010) Strain relatedness of meticillin-resistant Staphylococcus aureus isolates recovered from patients with repeated bacteraemia. Clin Microbiol Infect 16:463–469

    Article  PubMed  Google Scholar 

  14. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Kullar R, Davis SL, Kaye KS, Levine DP, Pogue JM, Rybak MJ (2013) Implementation of an antimicrobial stewardship pathway with daptomycin for optimal treatment of methicillin-resistant Staphylococcus aureus bacteremia. Pharmacotherapy 33:3–10

    Article  CAS  PubMed  Google Scholar 

  16. Kullar R, Davis SL, Levine DP, Rybak MJ (2011) Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis 52:975–981

    Article  CAS  PubMed  Google Scholar 

  17. Soriano A, Marco F, Martínez JA, Pisos E, Almela M, Dimova VP, Alamo D, Ortega M, Lopez J, Mensa J (2008) Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis 46:193–200

    Article  CAS  PubMed  Google Scholar 

  18. Chen SY, Liao CH, Wang JL, Chiang WC, Lai MS, Chie WC, Chen WJ, Chang SC, Hsueh PR (2012) Methicillin-resistant Staphylococcus aureus (MRSA) staphylococcal cassette chromosome mec genotype effects outcomes of patients with healthcare-associated MRSA bacteremia independently of vancomycin minimum inhibitory concentration. Clin Infect Dis 55:1329–1337

    Article  CAS  PubMed  Google Scholar 

  19. Lin SY, Chen TC, Chen FJ, Chen YH, Lin YI, Siu LK, Lu PL (2012) Molecular epidemiology and clinical characteristics of hetero-resistant vancomycin intermediate Staphylococcus aureus bacteremia in a Taiwan medical center. J Microbiol Immunol Infect 45:435–441

    Article  PubMed  Google Scholar 

  20. Noel GJ, Bush K, Bagchi P, Ianus J, Strauss RS (2008) A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin Infect Dis 46:647–655

    Article  PubMed  Google Scholar 

  21. Fritsche TR, Sader HS, Jones RN (2008) Antimicrobial activity of ceftobiprole, a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, tested against contemporary pathogens: results from the SENTRY Antimicrobial Surveillance Program (2005–2006). Diagn Microbiol Infect Dis 61:86–95

    Article  CAS  PubMed  Google Scholar 

  22. Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM (2013) The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 68:4–11

    Article  CAS  PubMed  Google Scholar 

  23. Sader HS, Moet GJ, Farrell DJ, Jones RN (2011) Antimicrobial susceptibility of daptomycin and comparator agents tested against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci: trend analysis of a 6-year period in US medical centers (2005–2010). Diagn Microbiol Infect Dis 70:412–416

    Article  CAS  PubMed  Google Scholar 

  24. Keel RA, Sutherland CA, Aslanzadeh J, Nicolau DP, Kuti JL (2010) Correlation between vancomycin and daptomycin MIC values for methicillin-susceptible and methicillin-resistant Staphylococcus aureus by 3 testing methodologies. Diagn Microbiol Infect Dis 68:326–329

    Article  CAS  PubMed  Google Scholar 

  25. Patel N, Lubanski P, Ferro S, Bonafede M, Harrington S, Evans A, Stellrecht K, Lodise TP (2009) Correlation between vancomycin MIC values and those of other agents against gram-positive bacteria among patients with bloodstream infections caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:5141–5144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Diekema DI, Jones RN (2000) Oxazolidinones: a review. Drugs 59:7–16

    Article  CAS  PubMed  Google Scholar 

  27. Prasad P, Sun J, Danner RL, Natanson C (2012) Excess deaths associated with tigecycline after approval based on noninferiority trials. Clin Infect Dis 54:1699–1709

    Article  CAS  PubMed  Google Scholar 

  28. Alaniz C, Pogue JM (2012) Vancomycin versus linezolid in the treatment of methicillin-resistant Staphylococcus aureus nosocomial pneumonia: implications of the ZEPHyR trial. Ann Pharmacother 46:1432–1435

    Article  PubMed  Google Scholar 

  29. Stryjewski ME, Chambers HF (2008) Skin and soft-tissue infections caused by community-acquired methicillin-resistant Staphylococcus aureus. Clin Infect Dis 46(Suppl 5):S368–S377

    Article  CAS  PubMed  Google Scholar 

  30. Chen YH, Liu CY, Lu JJ, King CH, Hsueh PR (2009) In vitro activity of nemonoxacin (TG-873870), a novel non-fluorinated quinolone, against clinical isolates of Staphylococcus aureus, enterococci and Streptococcus pneumoniae with various resistance phenotypes in Taiwan. J Antimicrob Chemother 64:1226–1229

    Article  CAS  PubMed  Google Scholar 

  31. Mongkolrattanothai K, Mankin P, Raju V, Gray B (2008) Surveillance for mupirocin resistance among methicillin-resistant Staphylococcus aureus clinical isolates. Infect Control Hosp Epidemiol 29:993–994

    Article  PubMed  Google Scholar 

  32. Patel JB, Gorwitz RJ, Jernigan JA (2009) Mupirocin resistance. Clin Infect Dis 49:935–941

    Article  CAS  PubMed  Google Scholar 

  33. O’Shea S, Cotter L, Creagh S, Lydon S, Lucey B (2009) Mupirocin resistance among staphylococci: trends in the southern region of Ireland. J Antimicrob Chemother 64:649–650

    Article  PubMed  Google Scholar 

  34. Kresken M, Hafner D, Schmitz FJ, Wichelhaus TA; Paul-Ehrlich-Society for Chemotherapy (2004) Prevalence of mupirocin resistance in clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis: results of the Antimicrobial Resistance Surveillance Study of the Paul-Ehrlich-Society for Chemotherapy, 2001. Int J Antimicrob Agents 23:577–581

    Article  CAS  PubMed  Google Scholar 

  35. Jones JC, Rogers TJ, Brookmeyer P, Dunne WM Jr, Storch GA, Coopersmith CM, Fraser VJ, Warren DK (2007) Mupirocin resistance in patients colonized with methicillin-resistant Staphylococcus aureus in a surgical intensive care unit. Clin Infect Dis 45:541–547

    Article  CAS  PubMed  Google Scholar 

  36. Korting HC, Schöllmann C, Stauss-Grabo M, Schäfer-Korting M (2012) Antimicrobial peptides and skin: a paradigm of translational medicine. Skin Pharmacol Physiol 25:323–334

    Article  CAS  PubMed  Google Scholar 

  37. Matula C, Nahler G, Kreuzig F (1988) Salivary levels of gramicidin after use of a tyrothricin-containing gargle/mouth-wash and tyrothricin lozenges. Int J Clin Pharmacol Res 8:259–261

    CAS  PubMed  Google Scholar 

  38. Wigger-Alberti W, Stauss-Grabo M, Grigo K, Atiye S, Williams R, Korting HC (2013) Efficacy of a tyrothricin-containing wound gel in an abrasive wound model for superficial wounds. Skin Pharmacol Physiol 26:52–56

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.-R. Hsueh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YH., Liu, CY., Ko, WC. et al. Trends in the susceptibility of methicillin-resistant Staphylococcus aureus to nine antimicrobial agents, including ceftobiprole, nemonoxacin, and tyrothricin: results from the Tigecycline In Vitro Surveillance in Taiwan (TIST) study, 2006–2010. Eur J Clin Microbiol Infect Dis 33, 233–239 (2014). https://doi.org/10.1007/s10096-013-1949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1949-y

Keywords

Navigation