Skip to main content
Log in

Study of the hormetic effect of disinfectants chlorhexidine, povidone iodine and benzalkonium chloride

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The study of the dose–response relationship of disinfectants is of great importance in treating infection, the objective being to use concentrations above the minimal bactericidal concentration (MBC). Below these concentrations, the bacteriostatic or bactericidal effect may be insufficient. Moreover, at low concentrations, a hormetic effect may be observed, producing a stimulation of growth instead of inhibitory action. Hormesis is not well known in the context of antimicrobial substances. This study investigates the possible existence of a hormetic effect in three commonly used antiseptics—chlorhexidine digluconate, povidone iodine and benzalkonium chloride—on strains of reference of Staphylococcus aureus and Pseudomonas aeruginosa. Growth curves were determined for different concentrations of the disinfectants. The variables studied—concentration of disinfectant, instantaneous growth rate and number of generations—were analysed using linear, quadratic and cubic models to adjust for the variables. The three disinfectants tested show a significant hormetic effect with P. aeruginosa and a less significant effect with S. aureus. These findings point to a dose–response effect that is not linear at low concentrations, while hormetic effects observed at some low concentrations result in greater bacterial growth. In infected wounds, materials or surfaces where microorganisms may occupy zones of difficult access for a disinfectant, the hormetic effect may have important consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Stebbing ARD (1982) Hormesis—the stimulation of growth by low levels of inhibitors. Sci Total Environ 22:213–234

    Article  CAS  PubMed  Google Scholar 

  2. Calabrese EJ, Baldwin LA (2003) Hormesis: the dose–response revolution. Annu Rev Pharmacol Toxicol 43:175–197

    Article  CAS  PubMed  Google Scholar 

  3. Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474

    Article  CAS  PubMed  Google Scholar 

  4. Calabrese EJ, Baldwin LA (1999) The marginalization of hormesis. Toxicol Pathol 27:187–194

    Article  CAS  PubMed  Google Scholar 

  5. Migliore L, Cozzolino S, Fiori M (2003) Phytotoxicity to and uptake of enrofloxacin in crop plants. Chemosphere 52:1233–1244

    Article  CAS  PubMed  Google Scholar 

  6. Deng Z, Lin Z, Zou X, Yao Z, Tian D, Wang D, Yin D (2012) Model of hormesis and its toxicity mechanism based on quorum sensing: a case study on the toxicity of sulfonamides to Photobacterium phosphoreum. Environ Sci Technol 46:7746–7754

    Article  CAS  PubMed  Google Scholar 

  7. Calabrese EJ, Stanek EJ 3rd, Nascarella MA (2012) A detailed re-assessment supports the conclusion of the paper that hormesis is commonly observed in the Ames assay. Mutat Res 747:157

    Article  CAS  PubMed  Google Scholar 

  8. Zeiger E, Hoffmann GR (2012) An illusion of hormesis in the Ames test: statistical significance is not equivalent to biological significance. Mutat Res 746:89–93

    Article  CAS  PubMed  Google Scholar 

  9. Cook R, Calabrese EJ (2006) The importance of hormesis to public health. Environ Health Perspect 114:1631–1635

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Marchetti MG, Kampf G, Finzi G, Salvatorelli G (2003) Evaluation of the bactericidal effect of five products for surgical hand disinfection according to prEN 12054 and prEN 12791. J Hosp Infect 54:63–67

    Article  CAS  PubMed  Google Scholar 

  11. McDonald C, McGuane S, Thomas J, Hartley S, Robbins S, Roy A, Verlander N, Barbara J (2010) A novel rapid and effective donor arm disinfection method. Transfusion 50:53–58

    Article  PubMed  Google Scholar 

  12. Ramirez-Arcos S, Goldman M (2010) Skin disinfection methods: prospective evaluation and postimplementation results. Transfusion 50:59–64

    Article  PubMed  Google Scholar 

  13. McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:147–179

    CAS  PubMed Central  PubMed  Google Scholar 

  14. AFNOR (1995) Antiseptiques et désinfectants, 3rd edn. AFNOR, Paris

    Google Scholar 

  15. European Committee for Standardization (2006) UNE-EN 1040: Chemical disinfectants and antiseptics. Quantitative suspension test for the evaluation of basic bactericidal activity of chemical disinfectants and antiseptics. Test method and requirements (phase 1). AENOR, Madrid

    Google Scholar 

  16. Espigares M, Crovetto G, Gálvez R (1998) In vitro evaluation of the toxicity of several dithiocarbamates using an Escherichia coli growth inhibition bioassay and the acetylcholinesterase inhibition test. Environ Toxicol Water Qual 13:165–174

    Article  CAS  Google Scholar 

  17. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113:173–215

    Article  CAS  PubMed  Google Scholar 

  18. Neidhardt FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119:736–747

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Bailer AJ, Oris JT (2000) Defining the baseline for inhibition concentration calculations for hormetic hazards. J Appl Toxicol 20:121–125

    Article  CAS  PubMed  Google Scholar 

  20. Hunt DL, Bowman D (2004) A parametric model for detecting hormetic effects in developmental toxicity studies. Risk Anal 24:65–72

    Article  PubMed  Google Scholar 

  21. Dette H, Pepelyshev A, Wong WK (2011) Optimal experimental design strategies for detecting hormesis. Risk Anal 31:1949–1960

    Article  PubMed Central  PubMed  Google Scholar 

  22. Thomas L, Maillard JY, Lambert RJW, Russell AD (2000) Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a “residual” concentration. J Hosp Infect 46:297–303

    Article  CAS  PubMed  Google Scholar 

  23. Loughlin MF, Jones MV, Lambert PA (2002) Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. J Antimicrob Chemoth 49:631–639

    Article  CAS  Google Scholar 

  24. Lambert RJW, Johnston MD (2000) Disinfection kinetics: a new hypothesis and model for the tailing of log-survivor/time curves. J Appl Microbiol 88:907–913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank César Criado Sánchez, laboratory technician of the Department of Preventive Medicine and Public Health, Faculty of Pharmacy, University of Granada, Spain, for his invaluable help in making this study possible. We also thank Jean Louise Sanders for translating and editing the manuscript.

Funding

This study was partially financed by the Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (Spain).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Espigares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morales-Fernández, L., Fernández-Crehuet, M., Espigares, M. et al. Study of the hormetic effect of disinfectants chlorhexidine, povidone iodine and benzalkonium chloride. Eur J Clin Microbiol Infect Dis 33, 103–109 (2014). https://doi.org/10.1007/s10096-013-1934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1934-5

Keywords

Navigation