Skip to main content

Advertisement

Log in

Impact of a program combining pre-authorization requirement and post-prescription review of carbapenems: an interrupted time-series analysis

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The objective of this study was to assess the impact on carbapenems use of a program combining pre-authorization requirement and systematic post-prescription review of carbapenems prescriptions. The program was implemented in a 1,230-bed teaching tertiary hospital. Monthly carbapenems consumption was analyzed using a controlled interrupted time-series method and compared to that of vancomycin before and after implementation of the intervention. Compared to the pre-intervention period (14 monthly points), a significant and sustained decrease of carbapenems consumption [1.66 defined daily doses (DDD)/1,000 patient-days; p = 0.048] was observed during the intervention period (12 monthly points), despite an increasing trend in incidence of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) isolates (0.02/1,000 patient-days per month; p = 0.093). As expected, vancomycin consumption was unaffected by the intervention. A total of 337 prescriptions were reviewed in the intervention period; most were microbiologically documented (81.3 %; ESBL-PE: 39.2 %). Three of four (76.6 %) carbapenems prescriptions were modified within a median [interquartile range] of 2 [1; 4] days, either after infectious disease physician (IDP) advice (48.4 %) or by ward physicians (28.2 %). Most changes included de-escalating (52.2 %) or reducing the planned duration (22.2 %), which resulted in a median duration of treatment of only 3 [2; 7] days. The median length of stay and mortality rate were not influenced by the intervention. This reasonably practicable antimicrobial stewardship program including controlled delivery and systematic reevaluation of carbapenems prescriptions was able to reduce their use in our hospital, despite a rising ESBL-PE incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pfaller MA, Segreti J (2006) Overview of the epidemiological profile and laboratory detection of extended-spectrum beta-lactamases. Clin Infect Dis 42:S153–S163

    Article  PubMed  CAS  Google Scholar 

  2. Livermore DM, Canton R, Gniadkowski M et al (2007) CTX-M: changing the face of ESBLs in Europe. J Antimicrob Chemother 59:165–174

    Article  PubMed  CAS  Google Scholar 

  3. Hilty M, Betsch BY, Bögli-Stuber K et al (2012) Transmission dynamics of extended-spectrum β-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clin Infect Dis 55:967–975

    Article  PubMed  Google Scholar 

  4. Turner PJ (2005) Extended-spectrum beta-lactamases. Clin Infect Dis 41:S273–S275

    Article  PubMed  CAS  Google Scholar 

  5. Paterson DL, Bonomo RA (2005) Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 18:657–686

    Article  PubMed  CAS  Google Scholar 

  6. Vardakas KZ, Tansarli GS, Rafailidis PI et al (2012) Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. J Antimicrob Chemother 67:2793–2803

    Article  PubMed  CAS  Google Scholar 

  7. Cantón R, Akóva M, Carmeli Y et al (2012) Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18:413–431

    Article  PubMed  Google Scholar 

  8. Vaux S, Carbonne A, Thiolet JM et al (2011) Emergence of carbapenemase-producing Enterobacteriaceae in France, 2004 to 2011. Euro Surveill 16. pii: 19880

  9. Bratu S, Landman D, Haag R et al (2005) Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med 165:1430–1435

    Article  PubMed  CAS  Google Scholar 

  10. Giakoupi P, Maltezou H, Polemis M et al (2009) KPC-2-producing Klebsiella pneumoniae infections in Greek hospitals are mainly due to a hyperepidemic clone. Euro Surveill 14. pii: 19218

  11. Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S et al (2008) Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother 52:1028–1033

    Article  PubMed  CAS  Google Scholar 

  12. Gasink LB, Edelstein PH, Lautenbach E et al (2009) Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Infect Control Hosp Epidemiol 30:1180–1185

    Article  PubMed  Google Scholar 

  13. Mouloudi E, Protonotariou E, Zagorianou A et al (2010) Bloodstream infections caused by metallo-β-lactamase/Klebsiella pneumoniae carbapenemase-producing K. pneumoniae among intensive care unit patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect Control Hosp Epidemiol 31:1250–1256

    Article  PubMed  Google Scholar 

  14. Ramsay C, Brown E, Hartman G et al (2003) Room for improvement: a systematic review of the quality of evaluations of interventions to improve hospital antibiotic prescribing. J Antimicrob Chemother 52:764–771

    Article  PubMed  CAS  Google Scholar 

  15. Ramsay CR, Matowe L, Grilli R et al (2003) Interrupted time series designs in health technology assessment: lessons from two systematic reviews of behavior change strategies. Int J Technol Assess Health Care 19:613–623

    Article  PubMed  Google Scholar 

  16. Davey P, Brown E, Fenelon L et al (2005) Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev 4:CD003543

    PubMed  Google Scholar 

  17. Lesprit P, Duong T, Girou E et al (2009) Impact of a computer-generated alert system prompting review of antibiotic use in hospitals. J Antimicrob Chemother 63:1058–1063

    Article  PubMed  CAS  Google Scholar 

  18. Gauzit R, Gutmann L, Brun-Buisson C et al (2010) Guidelines for good practice of carbapenems. Antibiotiques 12:183–189

    Article  CAS  Google Scholar 

  19. Dellit TH, Owens RC, McGowan JE et al (2007) Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 44:159–177

    Article  PubMed  Google Scholar 

  20. von Elm E, Altman DG, Egger M et al (2007) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet 370:1453–1457

    Article  Google Scholar 

  21. Lesprit P, Landelle C, Girou E et al (2010) Reassessment of intravenous antibiotic therapy using a reminder or direct counselling. J Antimicrob Chemother 65:789–795

    Article  PubMed  CAS  Google Scholar 

  22. Solomon DH, Van Houten L, Glynn RJ et al (2001) Academic detailing to improve use of broad-spectrum antibiotics at an academic medical center. Arch Intern Med 161:1897–1902

    Article  PubMed  CAS  Google Scholar 

  23. Elligsen M, Walker SA, Pinto R et al (2012) Audit and feedback to reduce broad-spectrum antibiotic use among intensive care unit patients: a controlled interrupted time series analysis. Infect Control Hosp Epidemiol 33:354–361

    Article  PubMed  Google Scholar 

  24. Lesprit P, Landelle C, Brun-Buisson C (2013) Unsolicited post-prescription antibiotic review in surgical and medical wards: factors associated with counselling and physicians’ compliance. Eur J Clin Microbiol Infect Dis 32:227–235

    Article  PubMed  CAS  Google Scholar 

  25. Lepper PM, Grusa E, Reichl H et al (2002) Consumption of imipenem correlates with beta-lactam resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 46:2920–2925

    Article  PubMed  CAS  Google Scholar 

  26. Livermore DM, Hope R, Mushtaq S et al (2008) Orthodox and unorthodox clavulanate combinations against extended-spectrum β-lactamase producers. Clin Microbiol Infect 14:189–193

    Article  PubMed  CAS  Google Scholar 

  27. Rodríguez-Baño J, Navarro MD, Retamar P et al (2012) β-lactam/β-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli: a post hoc analysis of prospective cohorts. Clin Infect Dis 54:167–174

    Article  PubMed  Google Scholar 

  28. Rodríguez-Baño J, Picón E, Navarro MD et al (2012) Impact of changes in CLSI and EUCAST breakpoints for susceptibility in bloodstream infections due to extended-spectrum β-lactamase-producing Escherichia coli. Clin Microbiol Infect 18:894–900

    Article  PubMed  Google Scholar 

  29. Peterson LR (2008) Antibiotic policy and prescribing strategies for therapy of extended-spectrum beta-lactamase-producing Enterobacteriaceae: the role of piperacillin–tazobactam. Clin Microbiol Infect 14:181–184

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lesprit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delory, T., De Pontfarcy, A., Emirian, A. et al. Impact of a program combining pre-authorization requirement and post-prescription review of carbapenems: an interrupted time-series analysis. Eur J Clin Microbiol Infect Dis 32, 1599–1604 (2013). https://doi.org/10.1007/s10096-013-1918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1918-5

Keywords

Navigation