Skip to main content
Log in

Virulence factor expression patterns in Pseudomonas aeruginosa strains from infants with cystic fibrosis

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is the leading cause of morbidity and mortality in cystic fibrosis (CF). This study examines the role of organism-specific factors in the pathogenesis of very early P. aeruginosa infection in the CF airway. A total of 168 longitudinally collected P. aeruginosa isolates from children diagnosed with CF following newborn screening were genotyped by pulsed-field gel electrophoresis (PFGE) and phenotyped for 13 virulence factors. Ninety-two strains were identified. Associations between virulence factors and gender, exacerbation, persistence, timing of infection and infection site were assessed using multivariate regression analysis. Persistent strains showed significantly lower pyoverdine, rhamnolipid, haemolysin, total protease, and swimming and twitching motility than strains eradicated by aggressive antibiotic treatments. Initial strains had higher levels of virulence factors, and significantly higher phospholipase C, than subsequent genotypically different strains at initial isolation. Strains from males had significantly lower pyoverdine and swimming motility than females. Colony size was significantly smaller in strains isolated during exacerbation than those isolated during non-exacerbation periods. All virulence factors were higher and swimming motility significantly higher in strains from bronchoalveolar lavage (BAL) and oropharyngeal sites than BAL alone. Using unadjusted regression modelling, age at initial infection and age at isolation of a strain showed U-shaped profiles for most virulence factors. Among subsequent strains, longer time since initial infection meant lower levels of most virulence factors. This study provides new insight into virulence factors underpinning impaired airway clearance seen in CF infants, despite aggressive antibiotic therapy. This information will be important in the development of new strategies to reduce the impact of P. aeruginosa in CF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lee TW, Brownlee KG, Denton M, Littlewood JM, Conway SP (2004) Reduction in prevalence of chronic Pseudomonas aeruginosa infection at a regional pediatric cystic fibrosis center. Pediatr Pulmonol 37:104–110

    Article  PubMed  Google Scholar 

  2. Williams BJ, Dehnbostel J, Blackwell TS (2010) Pseudomonas aeruginosa: host defence in lung diseases. Respirology 15:1037–1056

    Article  PubMed  Google Scholar 

  3. Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7:745–754

    Article  PubMed  CAS  Google Scholar 

  4. Oberhardt MA, Goldberg JB, Hogardt M, Papin JA (2010) Metabolic network analysis of Pseudomonas aeruginosa during chronic cystic fibrosis lung infection. J Bacteriol 192:5534–5548

    Article  PubMed  CAS  Google Scholar 

  5. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492

    Article  PubMed  CAS  Google Scholar 

  6. Bianconi I, Milani A, Cigana C, Paroni M, Levesque RC, Bertoni G, Bragonzi A (2011) Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection. PLoS Pathog 7:e1001270

    Article  PubMed  CAS  Google Scholar 

  7. Hu H, Harmer C, Anuj S, Wainwright CE, Manos J, Cheney J, Harbour C, Zablotska I, Turnbull L, Whitchurch CB, Grimwood K, Rose B; FBAL study investigators (2013) Type 3 secretion system effector genotype and secretion phenotype of longitudinally collected Pseudomonas aeruginosa isolates from young children diagnosed with cystic fibrosis following newborn screening. Clin Microbiol Infect 19:266–272

    Article  PubMed  CAS  Google Scholar 

  8. Wainwright CE, Vidmar S, Armstrong DS, Byrnes CA, Carlin JB, Cheney J, Cooper PJ, Grimwood K, Moodie M, Robertson CF, Tiddens HA; ACFBAL Study Investigators (2011) Effect of bronchoalveolar lavage-directed therapy on Pseudomonas aeruginosa infection and structural lung injury in children with cystic fibrosis: a randomized trial. JAMA 306:163–171

    Article  PubMed  CAS  Google Scholar 

  9. Kidd TJ, Ramsay KA, Hu H, Bye PT, Elkins MR, Grimwood K, Harbour C, Marks GB, Nissen MD, Robinson PJ, Rose BR, Sloots TP, Wainwright CE, Bell SC; ACPinCF Investigators (2009) Low rates of Pseudomonas aeruginosa misidentification in isolates from cystic fibrosis patients. J Clin Microbiol 47:1503–1509

    Article  PubMed  Google Scholar 

  10. Anthony M, Rose B, Pegler MB, Elkins M, Service H, Thamotharampillai K, Watson J, Robinson M, Bye P, Merlino J, Harbour C (2002) Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol 40:2772–2778

    Article  PubMed  CAS  Google Scholar 

  11. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    PubMed  CAS  Google Scholar 

  12. Higashihara TAS (1984) Isolation of pyocyanin produced by hydrocarbon-assimilating bacteria and its taxonomic characteristics. Report Ferment Res Inst 63:65–78

    Google Scholar 

  13. Vinckx T, Wei Q, Matthijs S, Cornelis P (2010) The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. Microbiology 156:678–686

    Article  PubMed  CAS  Google Scholar 

  14. Essar DW, Eberly L, Hadero A, Crawford IP (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900

    PubMed  CAS  Google Scholar 

  15. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  16. Hohnadel D, Haas D, Meyer J-M (1986) Mapping of mutations affecting pyoverdine production in Pseudomonas aeruginosa. FEMS Microbiol Lett 36:195–199

    Article  CAS  Google Scholar 

  17. Pomerantsev AP, Kalnin KV, Osorio M, Leppla SH (2003) Phosphatidylcholine-specific phospholipase C and sphingomyelinase activities in bacteria of the Bacillus cereus group. Infect Immun 71:6591–6606

    Article  PubMed  CAS  Google Scholar 

  18. Rossignol G, Merieau A, Guerillon J, Veron W, Lesouhaitier O, Feuilloley MG, Orange N (2008) Involvement of a phospholipase C in the hemolytic activity of a clinical strain of Pseudomonas fluorescens. BMC Microbiol 8:189

    Article  PubMed  Google Scholar 

  19. Kidd TJ, Ramsay KA, Hu H, Marks GB, Wainwright CE, Bye PT, Elkins MR, Robinson PJ, Rose BR, Wilson JW, Grimwood K, Bell SC; ACPinCF Investigator Group (2013) Shared Pseudomonas aeruginosa genotypes are common in Australian cystic fibrosis centres. Eur Respir J 41:1091–1100

    Article  PubMed  Google Scholar 

  20. Bjarnsholt T, Jensen PØ, Jakobsen TH, Phipps R, Nielsen AK, Rybtke MT, Tolker-Nielsen T, Givskov M, Høiby N, Ciofu O; Scandinavian Cystic Fibrosis Study Consortium (2010) Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One 5:e10115

    Article  PubMed  Google Scholar 

  21. Bragonzi A, Paroni M, Nonis A, Cramer N, Montanari S, Rejman J, Di Serio C, Döring G, Tümmler B (2009) Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. Am J Respir Crit Care Med 180:138–145

    Article  PubMed  Google Scholar 

  22. Lorè NI, Cigana C, De Fino I, Riva C, Juhas M, Schwager S, Eberl L, Bragonzi A (2012) Cystic fibrosis-niche adaptation of Pseudomonas aeruginosa reduces virulence in multiple infection hosts. PLoS One 7:e35648

    Article  PubMed  Google Scholar 

  23. Amiel E, Lovewell RR, O’Toole GA, Hogan DA, Berwin B (2010) Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression. Infect Immun 78:2937–2945

    Article  PubMed  CAS  Google Scholar 

  24. De Vos D, De Chial M, Cochez C, Jansen S, Tümmler B, Meyer JM, Cornelis P (2001) Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch Microbiol 175:384–388

    Article  PubMed  Google Scholar 

  25. Pacheco GJ, Reis RS, Fernandes AC, da Rocha SL, Pereira MD, Perales J, Freire DM (2012) Rhamnolipid production: effect of oxidative stress on virulence factors and proteome of Pseudomonas aeruginosa PA1. Appl Microbiol Biotechnol 95:1519–1529

    Article  PubMed  CAS  Google Scholar 

  26. Morris JD, Hewitt JL, Wolfe LG, Kamatkar NG, Chapman SM, Diener JM, Courtney AJ, Leevy WM, Shrout JD (2011) Imaging and analysis of Pseudomonas aeruginosa swarming and rhamnolipid production. Appl Environ Microbiol 77:8310–8317

    Article  PubMed  CAS  Google Scholar 

  27. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  PubMed  CAS  Google Scholar 

  28. Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    Article  PubMed  CAS  Google Scholar 

  29. Stehling EG, Silveira WD, Leite Dda S (2008) Study of biological characteristics of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis and from patients with extra-pulmonary infections. Braz J Infect Dis 12:86–88

    Article  PubMed  Google Scholar 

  30. Reiling SA, Jansen JA, Henley BJ, Singh S, Chattin C, Chandler M, Rowen DW (2005) Prc protease promotes mucoidy in mucA mutants of Pseudomonas aeruginosa. Microbiology 151:2251–2261

    Article  PubMed  CAS  Google Scholar 

  31. Wargo MJ, Gross MJ, Rajamani S, Allard JL, Lundblad LK, Allen GB, Vasil ML, Leclair LW, Hogan DA (2011) Hemolytic phospholipase C inhibition protects lung function during Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 184:345–354

    Article  PubMed  CAS  Google Scholar 

  32. FitzSimmons SC (1993) The changing epidemiology of cystic fibrosis. J Pediatr 122:1–9

    Article  PubMed  CAS  Google Scholar 

  33. Grimwood K, Semple RA, Rabin HR, Sokol PA, Woods DE (1993) Elevated exoenzyme expression by Pseudomonas aeruginosa is correlated with exacerbations of lung disease in cystic fibrosis. Pediatr Pulmonol 15:135–139

    Article  PubMed  CAS  Google Scholar 

  34. Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby N (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44:547–558

    Article  PubMed  Google Scholar 

  35. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  PubMed  CAS  Google Scholar 

  36. Murray TS, Ledizet M, Kazmierczak BI (2010) Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol 59:511–520

    Article  PubMed  CAS  Google Scholar 

  37. Hansen SK, Rau MH, Johansen HK, Ciofu O, Jelsbak L, Yang L, Folkesson A, Jarmer HØ, Aanæs K, von Buchwald C, Høiby N, Molin S (2012) Evolution and diversification of Pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection. ISME J 6:31–45

    Article  PubMed  Google Scholar 

  38. Johansen HK, Aanaes K, Pressler T, Nielsen KG, Fisker J, Skov M, Høiby N, von Buchwald C (2012) Colonisation and infection of the paranasal sinuses in cystic fibrosis patients is accompanied by a reduced PMN response. J Cyst Fibros 11:525–531

    Article  PubMed  CAS  Google Scholar 

  39. Burke V, Robinson JO, Richardson CJ, Bundell CS (1991) Longitudinal studies of virulence factors of Pseudomonas aeruginosa in cystic fibrosis. Pathology 23:145–148

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Health and Medical Research Council (NHMRC, # 351541) and the Australian Cystic Fibrosis Trust. Cynthia B. Whitchurch was supported by an NHMRC Career Development Award and an NHMRC Senior Research Fellowship.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J. Manos.

Additional information

Jim Manos and Honghua Hu contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manos, J., Hu, H., Rose, B.R. et al. Virulence factor expression patterns in Pseudomonas aeruginosa strains from infants with cystic fibrosis. Eur J Clin Microbiol Infect Dis 32, 1583–1592 (2013). https://doi.org/10.1007/s10096-013-1916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1916-7

Keywords

Navigation