A positive interaction between inhibitors of protein synthesis and cefepime in the fight against methicillin-resistant Staphylococcus aureus

  • B. GuignardEmail author
  • J. Vouillamoz
  • M. Giddey
  • P. Moreillon


Quinupristin–dalfopristin (Q-D) synergizes with cefepime for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Here, we studied whether the synergism was restricted to MRSA and if it extended to non-beta-lactam cell wall inhibitors or to other inhibitors of protein synthesis. Three MRSA and two methicillin-susceptible S. aureus (MSSA) strains were tested, including an isogenic pair of mecA /mecA + S. aureus Newman. The drug interactions were determined by fractional inhibitory concentration (FIC) indices and population analysis profiles. The antibacterial drugs that we used included beta-lactam (cefepime) and non-beta-lactam cell wall inhibitors (D-cycloserine, fosfomycin, vancomycin, teicoplanin), inhibitors of protein synthesis (Q-D, erythromycin, chloramphenicol, tetracycline, linezolid, fusidic acid), and polynucleotide inhibitors (cotrimoxazole, ciprofloxacin). The addition of each protein inhibitor to cefepime was synergistic (FIC ≤ 0.5) or additive (FIC > 0.5 but < 1) against MRSA, but mostly indifferent against MSSA (FIC ≥ 1 but ≤ 4). This segregation was not observed after adding cotrimoxazole or ciprofloxacin to cefepime. Population analysis profiles were performed on plates in the presence of increasing concentrations of the cell wall inhibitors plus 0.25 × minimum inhibitory concentration (MIC) of Q-D. Cefepime combined with Q-D was synergistic against MRSA, but D-cycloserine and glycopeptides were not. Thus, the synergism was specific to beta-lactam antibiotics. Moreover, the synergism was not lost against fem mutants, indicating that it acted at another level. The restriction of the beneficial effect to MRSA suggests that the functionality of penicillin-binding protein 2A (PBP2A) was affected, either directly or indirectly. Further studies are necessary in order to provide a mechanism for this positive interaction.


Minimum Inhibitory Concentration Linezolid Teicoplanin Cefepime Tigecycline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants 3200-47099.96 and 3200-0458.95/2 from the Swiss National Funds for Scientific Research and an unrestricted grant from the Foundation for Advances in Medical Microbiology and Infectious Diseases.

We thank Prof. Brigitte Berger-Bächi, Institute of Microbiology, University of Zürich, for generously providing the mutant strains.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Guignard B, Entenza JM, Moreillon P (2005) Beta-lactams against methicillin-resistant Staphylococcus aureus. Curr Opin Pharmacol 5(5):479–489PubMedCrossRefGoogle Scholar
  2. 2.
    Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, Nouwen JL (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5(12):751–762PubMedCrossRefGoogle Scholar
  3. 3.
    Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357(9264):1225–1240PubMedCrossRefGoogle Scholar
  4. 4.
    Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML (2010) Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 23(1):99–139PubMedCrossRefGoogle Scholar
  5. 5.
    Sorlozano A, Gutierrez J, Martinez T, Yuste ME, Perez-Lopez JA, Vindel A, Guillen J, Boquete T (2010) Detection of new mutations conferring resistance to linezolid in glycopeptide-intermediate susceptibility Staphylococcus hominis subspecies hominis circulating in an intensive care unit. Eur J Clin Microbiol Infect Dis 29(1):73–80PubMedCrossRefGoogle Scholar
  6. 6.
    Shakil S, Akram M, Khan AU (2008) Tigecycline: a critical update. J Chemother 20(4):411–419PubMedGoogle Scholar
  7. 7.
    Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12PubMedCrossRefGoogle Scholar
  8. 8.
    Lim D, Strynadka NC (2002) Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol 9(11):870–876PubMedGoogle Scholar
  9. 9.
    Moreillon P (2008) New and emerging treatment of Staphylococcus aureus infections in the hospital setting. Clin Microbiol Infect 14(Suppl 3):32–41PubMedCrossRefGoogle Scholar
  10. 10.
    Llarrull LI, Fisher JF, Mobashery S (2009) Molecular basis and phenotype of methicillin resistance in Staphylococcus aureus and insights into new beta-lactams that meet the challenge. Antimicrob Agents Chemother 53(10):4051–4063PubMedCrossRefGoogle Scholar
  11. 11.
    Climo MW, Ehlert K, Archer GL (2001) Mechanism and suppression of lysostaphin resistance in oxacillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45(5):1431–1437PubMedCrossRefGoogle Scholar
  12. 12.
    Vouillamoz J, Entenza JM, Féger C, Glauser MP, Moreillon P (2000) Quinupristin–dalfopristin combined with beta-lactams for treatment of experimental endocarditis due to Staphylococcus aureus constitutively resistant to macrolide–lincosamide–streptogramin B antibiotics. Antimicrob Agents Chemother 44(7):1789–1795PubMedCrossRefGoogle Scholar
  13. 13.
    Sieradzki K, Tomasz A (1997) Suppression of beta-lactam antibiotic resistance in a methicillin-resistant Staphylococcus aureus through synergic action of early cell wall inhibitors and some other antibiotics. J Antimicrob Chemother 39(Suppl A):47–51PubMedCrossRefGoogle Scholar
  14. 14.
    Allen GP, Cha R, Rybak MJ (2002) In vitro activities of quinupristin–dalfopristin and cefepime, alone and in combination with various antimicrobials, against multidrug-resistant staphylococci and enterococci in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 46(8):2606–2612PubMedCrossRefGoogle Scholar
  15. 15.
    Vaudaux PE, Monzillo V, Francois P, Lew DP, Foster TJ, Berger-Bächi B (1998) Introduction of the mec element (methicillin resistance) into Staphylococcus aureus alters in vitro functional activities of fibrinogen and fibronectin adhesins. Antimicrob Agents Chemother 42(3):564–570PubMedGoogle Scholar
  16. 16.
    Blanc DS, Petignat C, Moreillon P, Entenza JM, Eisenring M, Kleiber H, Wenger A, Troillet N, Blanc C, Francioli P (1999) Unusual spread of a penicillin-susceptible methicillin-resistant Staphylococcus aureus clone in a geographic area of low incidence. Clin Infect Dis 29(6):1512–1518PubMedCrossRefGoogle Scholar
  17. 17.
    Murakami K, Tomasz A (1989) Involvement of multiple genetic determinants in high-level methicillin resistance in Staphylococcus aureus. J Bacteriol 171(2):874–879PubMedGoogle Scholar
  18. 18.
    Franciolli M, Bille J, Glauser MP, Moreillon P (1991) Beta-lactam resistance mechanisms of methicillin-resistant Staphylococcus aureus. J Infect Dis 163(3):514–523PubMedCrossRefGoogle Scholar
  19. 19.
    Beck WD, Berger-Bächi B, Kayser FH (1986) Additional DNA in methicillin-resistant Staphylococcus aureus and molecular cloning of mec-specific DNA. J Bacteriol 165(2):373–378PubMedGoogle Scholar
  20. 20.
    Henze U, Sidow T, Wecke J, Labischinski H, Berger-Bächi B (1993) Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J Bacteriol 175(6):1612–1620PubMedGoogle Scholar
  21. 21.
    Strandén AM, Ehlert K, Labischinski H, Berger-Bächi B (1997) Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J Bacteriol 179(1):9–16PubMedGoogle Scholar
  22. 22.
    Amsterdam D (1996) Susceptibility testing of antimicrobials in liquid media. In: Lorian V (ed) Antibiotics in laboratory medicine. The Williams & Wilkins Co., Baltimore, pp 52–111Google Scholar
  23. 23.
    Eliopoulos GM, Moellering RC Jr (1996) Antimicrobial combinations. In: Lorian V (ed) Antibiotics in laboratory medicine. The Williams & Wilkins Co., Baltimore, pp 330–396Google Scholar
  24. 24.
    Que YA, Entenza JM, Francioli P, Moreillon P (1998) The impact of penicillinase on cefamandole treatment and prophylaxis of experimental endocarditis due to methicillin-resistant Staphylococcus aureus. J Infect Dis 177(1):146–154PubMedCrossRefGoogle Scholar
  25. 25.
    Utsui Y, Ohya S, Magaribuchi T, Tajima M, Yokota T (1986) Antibacterial activity of cefmetazole alone and in combination with fosfomycin against methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother 30(6):917–922PubMedCrossRefGoogle Scholar
  26. 26.
    de Jonge BL, Tomasz A (1993) Abnormal peptidoglycan produced in a methicillin-resistant strain of Staphylococcus aureus grown in the presence of methicillin: functional role for penicillin-binding protein 2A in cell wall synthesis. Antimicrob Agents Chemother 37(2):342–346PubMedCrossRefGoogle Scholar
  27. 27.
    Berger-Bächi B, Rohrer S (2002) Factors influencing methicillin resistance in staphylococci. Arch Microbiol 178(3):165–171PubMedCrossRefGoogle Scholar
  28. 28.
    de Lencastre H, de Jonge BL, Matthews PR, Tomasz A (1994) Molecular aspects of methicillin resistance in Staphylococcus aureus. J Antimicrob Chemother 33(1):7–24PubMedCrossRefGoogle Scholar
  29. 29.
    Rohrer S, Berger-Bächi B (2003) FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in gram-positive cocci. Antimicrob Agents Chemother 47(3):837–846PubMedCrossRefGoogle Scholar
  30. 30.
    Pachón-Ibáñez ME, Ribes S, Domínguez MA, Fernández R, Tubau F, Ariza J, Gudiol F, Cabellos C (2011) Efficacy of fosfomycin and its combination with linezolid, vancomycin and imipenem in an experimental peritonitis model caused by a Staphylococcus aureus strain with reduced susceptibility to vancomycin. Eur J Clin Microbiol Infect Dis 30(1):89–95PubMedCrossRefGoogle Scholar
  31. 31.
    Pinho MG, Filipe SR, de Lencastre H, Tomasz A (2001) Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. J Bacteriol 183(22):6525–6531PubMedCrossRefGoogle Scholar
  32. 32.
    Kusser W, Ishiguro EE (1986) Lysis of nongrowing Escherichia coli by combinations of beta-lactam antibiotics and inhibitors of ribosome function. Antimicrob Agents Chemother 29(3):451–455PubMedCrossRefGoogle Scholar
  33. 33.
    Cassels R, Oliva B, Knowles D (1995) Occurrence of the regulatory nucleotides ppGpp and pppGpp following induction of the stringent response in staphylococci. J Bacteriol 177(17):5161–5165PubMedGoogle Scholar
  34. 34.
    Lorian V, Amaral L, Fernandes F (1995) RP 59500 postantibiotic effect defined by bacterial ultrastructure. Drugs Exp Clin Res 21(3):125–128PubMedGoogle Scholar
  35. 35.
    Utaida S, Dunman PM, Macapagal D, Murphy E, Projan SJ, Singh VK, Jayaswal RK, Wilkinson BJ (2003) Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology 149(Pt 10):2719–2732PubMedCrossRefGoogle Scholar
  36. 36.
    Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32(1):107–146PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • B. Guignard
    • 1
    • 2
    Email author
  • J. Vouillamoz
    • 1
  • M. Giddey
    • 1
  • P. Moreillon
    • 1
  1. 1.Department of Fundamental Microbiology, Biophore BuildingUniversity of LausanneLausanneSwitzerland
  2. 2.Division of PharmacyUniversity Hospitals of GenevaGeneva 14Switzerland

Personalised recommendations