Rapid detection of urinary tract infections caused by Proteus spp. using PNA-FISH


We developed a fluorescence in situ hybridization (FISH) method for the rapid detection of Proteus spp. in urine, using a novel peptide nucleic acid (PNA) probe. Testing on 137 urine samples from patients with urinary tract infections has shown specificity and sensitivity values of 98 % (95 % CI, 93.2–99.7) and 100 % (95 % CI, 80,8–100), respectively, when compared with CHROMagar Orientation medium. Results indicate that PNA-FISH is a reliable alternative to traditional culture methods and can reduce the diagnosis time to approximately 2 h.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Gordon KA, Jones RN (2003) Susceptibility patterns of orally administered antimicrobials among urinary tract infection pathogens from hospitalized patients in North America: comparison report to Europe and Latin America. Results from the sentry antimicrobial surveillance program (2000). Diagn Microbiol Infect Dis 45:295–301

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Farrell DJ, Morrissey I, De Rubeis D, Robbins M, Felmingham D (2003) A UK multicentre study of the antimicrobial susceptibility of bacterial pathogens causing urinary tract infection. J Infect 46:94–100

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Cohen-Nahum K, Saidel-Odes L, Riesenberg K, Schlaeffer F, Borer A (2010) Urinary tract infections caused by multi-drug resistant proteus mirabilis: Risk factors and clinical outcomes. Infection 38:41–46

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME (2008) Complicated catheter-associated urinary tract infections due to escherichia coli and proteus mirabilis. Clin Microbiol Rev 21:26–59

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Pavlou AK, Magan N, McNulty C et al (2002) Use of an electronic nose system for diagnoses of urinary tract infections. Biosens Bioelectron 17:893–899

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    D’Souza HA, Campbell M, Baron EJ (2004) Practical bench comparison of bbl chromagar orientation and standard two-plate media for urine cultures. J Clin Microbiol 42:60–64

    PubMed  Article  Google Scholar 

  7. 7.

    Chaux C, Crepy M, Xueref S, Roure C, Gille Y, Freydiere AM (2002) Comparison of three chromogenic agar plates for isolation and identification of urinary tract pathogens. Clin Microbiol Infect 8:641–645

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Scarparo C, Piccoli P, Ricordi P, Scagnelli M (2002) Comparative evaluation of two commercial chromogenic media for detection and presumptive identification of urinary tract pathogens. Eur J Clin Microbiol Infect Dis 21:283–289

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Aspevall O, Osterman B, Dittmer R, Sten L, Lindback E, Forsum U (2002) Performance of four chromogenic urine culture media after one or two days of incubation compared with reference media. J Clin Microbiol 40:1500–1503

    PubMed  Article  Google Scholar 

  10. 10.

    Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Stender H (2003) Pna fish: an intelligent stain for rapid diagnosis of infectious diseases. Expert Rev Mol Diagn 3:649–655

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Cerqueira L, Azevedo NF, Almeida C, Jardim T, Keevil CW, Vieira MJ (2008) DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (fish). Int J Mol Sci 9:1944–1960

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Forrest GN (2007) Pna fish: present and future impact on patient management. Expert Rev Mol Diagn 7:231–236

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Forrest GN, Roghmann MC, Toombs LS et al (2008) Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob Agents Chemother 52:3558–3563

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Ashelford KE, Weightman AJ, Fry JC (2002) Primrose: a computer program for generating and estimating the phylogenetic range of 16s rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. Nucleic Acids Res 30:3481–3489

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Cole JR, Chai B, Farris RJ et al (2005) The ribosomal database project (RDP-II): sequences and tools for high-throughput rrna analysis. Nucleic Acids Res 33:D294–D296

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Almeida C, Azevedo NF, Iversen C, Fanning S, Keevil CW, Vieira MJ (2009) Development and application of a novel peptide nucleic acid probe for the specific detection of Cronobacter genomospecies (Enterobacter sakazakii) in powdered infant formula. Appl Environ Microbiol 75:2925–2930

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Brooks T, Keevil CW (1997) A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol 24:203–206

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Taborda M, Antunes A, Tiago I, Verissimo A, Nobre MF, da Costa MS (2009) Description of Idiomarina insulisalsae sp. nov., isolated from the soil of a sea salt evaporation pond, proposal to transfer the species of the genus Pseudidiomarina to the genus Idiomarina and emended description of the genus Idiomarina. Syst Appl Microbiol 32:371–378

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Jean WD, Leu TY, Lee CY, Chu TJ, Lin SY, Shieh WY (2009) Pseudidiomarina marina sp. nov. and Pseudidiomarina tainanensis sp. nov. and reclassification of Idiomarina homiensis and Idiomarina salinarum as Pseudidiomarina homiensis comb. nov. and Pseudidiomarina salinarum comb. nov., respectively. Int J Syst Evol Microbiol 59:53–59

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Tantibhedhyangkul W, Prachason T, Waywa D, et al (2011) Orientia tsutsugamushi stimulates an original gene expression program in monocytes: relationship with gene expression in patients with scrub typhus. Plos Negl Trop Dis 5:e1028

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Ronald A (2002) The etiology of urinary tract infection: traditional and emerging pathogens. Am J Med 113:14s–19s

    PubMed  Article  Google Scholar 

  23. 23.

    Cao B, Wang M, Liu L et al (2009) 16s-23s rdna internal transcribed spacer regions in four proteus species. J Microbiol Methods 77:109–118

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    O’Hara CM, Brenner FW, Miller JM (2000) Classification, identification, and clinical significance of proteus, providencia, and morganella. Clin Microbiol Rev 13:534–546

    PubMed  Article  Google Scholar 

  25. 25.

    O’Hara CM, Brenner FW, Steigerwalt AG et al (2000) Classification of Proteus vulgaris biogroup 3 with recognition of Proteus hauseri sp. nov., nom. rev. and unnamed Proteus genomospecies 4, 5 and 6. Int J Syst Evol Microbiol 50:1869–1875

    PubMed  Google Scholar 

  26. 26.

    Nickel JC (2005) Management of urinary tract infections: historical perspective and current strategies: part 1—before antibiotics. J Urol 173:21–26

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    American Academy of Pediatrics (1999) Practice parameter: the diagnosis, treatment, and evaluation of the initial urinary tract infection in febrile infants and young children. American Academy of Pediatrics. Committee on quality improvement. Subcommittee on urinary tract infection. Pediatrics 103:843–852

    Google Scholar 

  28. 28.

    Hoberman A, Wald ER, Reynolds EA, Penchansky L, Charron M (1994) Pyuria and bacteriuria in urine specimens obtained by catheter from young children with fever. J Pediatr 124:513–519

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Liao JC, Mastali M, Gau V et al (2006) Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J Clin Microbiol 44:561–570

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Almeida C, Azevedo NF, Santos S, Keevil CW, Vieira MJ (2011) Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). Plos One 6:e14786

    PubMed  Article  CAS  Google Scholar 

Download references


We would like to thank Cristina Silva for providing us the urine samples. This work was supported by Fundação para a Ciência e Tecnologia (Postdoctoral Fellowship SFRH/BPD/74480/2010 and project PIC/IC/82815/2007) and by the European Commission’s Framework Programme (FP7: “COST-Action TD1004: Theragnostics for imaging and therapy”).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information



Corresponding author

Correspondence to C. Almeida.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

The 16S rRNA Proteus sequences not detected by theProPNA190 probe. Probe (reverse complementary) alignment with P. vulgaris J01874 (accession number: S000414235); P. mirabilis EF371001 (S000806301); P. mirabilis HQ407312 (S002305608); P. mirabilis HQ231796 (S002409155) and Proteus sp. HQ588328 (S002950968); showing the mismatch base pairs (grey squares) in different the different positions


(DOCX 12 kb)

High resolution image (TIFF 412 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Almeida, C., Azevedo, N.F., Bento, J.C. et al. Rapid detection of urinary tract infections caused by Proteus spp. using PNA-FISH. Eur J Clin Microbiol Infect Dis 32, 781–786 (2013). https://doi.org/10.1007/s10096-012-1808-2

Download citation


  • Peptide Nucleic Acid
  • Peptide Nucleic Acid Probe
  • Artificial Urine
  • Chromogenic Medium
  • Defibrinated Horse Blood