Antimicrobial agent exposure and the emergence and spread of resistant microorganisms: issues associated with study design

  • C. Angebault
  • A. Andremont


Antibiotics are essential agents that have greatly reduced human mortality due to infectious diseases. Their use, and sometimes overuse, have increased over the past several decades in humans, veterinary medicine and agriculture. However, the emergence of resistant pathogens is becoming an increasing problem that could result in the re-emergence of infectious diseases. Antibiotic prescription in human medicine plays a key role in this phenomenon. Under selection pressure, resistance can emerge in the commensal flora of treated individuals and disseminate to others. However, even if the effects of antimicrobial use on resistance is intuitively accepted, scientific rationales are required to convince physicians, legislators and public opinion to adopt appropriate behaviours and policies. With this review, we aim to provide an overview of different epidemiological study designs that are used to study the relationship between antibiotic use and the emergence and spread of resistance, as well as highlight their main strengths and weaknesses.


Internal Validity Antibiotic Prescription Resistant Organism Antibiotic Exposure Trachoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Dr. François Rousset for critically reading this manuscript.

Conflict of interest

All authors: no reported conflicts.


  1. 1.
    Omran AR (2001) The epidemiologic transition. A theory of the Epidemiology of population change. 1971. Bull World Health Organ 79:161–170PubMedGoogle Scholar
  2. 2.
    Armelagos GJ, Brown PJ, Turner B (2005) Evolutionary, historical and political economic perspectives on health and disease. Soc Sci Med 61:755–765. doi: 10.1016/j.socscimed.2004.08.066 PubMedCrossRefGoogle Scholar
  3. 3.
    Harper K, Armelagos G (2010) The changing disease-scape in the third epidemiological transition. Int J Environ Res Public Health 7:675–697. doi: 10.3390/ijerph7020675 PubMedCrossRefGoogle Scholar
  4. 4.
    Bax R, Mullan N, Verhoef J (2000) The millennium bugs—the need for and development of new antibacterials. Int J Antimicrob Agents 16:51–59. doi: 10.1016/S0924-8579(00)00189-8 PubMedCrossRefGoogle Scholar
  5. 5.
    Lipsitch M, Samore MH (2002) Antimicrobial use and antimicrobial resistance: a population perspective. Emerg Infect Dis 8:347–354PubMedCrossRefGoogle Scholar
  6. 6.
    Susser M (2001) Glossary: causality in public health science. J Epidemiol Community Health 55(6):376–378. doi: 10.1136/jech.55.6.376 CrossRefGoogle Scholar
  7. 7.
    Rothman KJ, Greenland S, Poole C, Lash TL (2008) Causation and causal inference. In: Rothman KJ, Greenland S, Lash TL (eds) Modern epidemiology. Lippincott Williams & Wilkins, Philadelphia, p 5–31Google Scholar
  8. 8.
    Riegelman RK (2005) Studying a study and testing a test: how to read the medical evidence, 5th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  9. 9.
    Olsen J (2003) What characterises a useful concept of causation in epidemiology? J Epidemiol Community Health 57(2):86–88. doi: 10.1136/jech.57.2.86 PubMedCrossRefGoogle Scholar
  10. 10.
    Hume D (1739) Part III. Of Knowledge and Probability. In: A Treatise of Human Nature. Book 1. Of the UnderstandingGoogle Scholar
  11. 11.
    Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300PubMedGoogle Scholar
  12. 12.
    Susser M (1991) What is a cause and how do we know one? A grammar for pragmatic epidemiology. Am J Epidemiol 133(7):635–648PubMedGoogle Scholar
  13. 13.
    (1964) Smoking and Health: Report of the Advisory Committee to the Surgeon General of the Public Health Service. Washington, DC: US Department of Health, Education, and Welfare: Public Health Service PublicationGoogle Scholar
  14. 14.
    Rothman KJ, Greenland S (2005) Causation and causal inference in epidemiology. Am J Public Health 95:S144–S150. doi: 10.2105/AJPH.2004.059204 PubMedCrossRefGoogle Scholar
  15. 15.
    Infectious Diseases Society of America (IDSA), Spellberg B, Blaser M, Guidos RJ, Boucher HW, Bradley JS et al (2011) Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis 52(Suppl 5):S397–S428. doi: 10.1093/cid/cir153 PubMedGoogle Scholar
  16. 16.
    Carlet J, Collignon P, Goldmann D, Goossens H, Gyssens IC, Harbarth S et al (2011) Society’s failure to protect a precious resource: antibiotics. Lancet 378(23):369–371. doi: 10.1016/S0140-6736(11)60401-7 PubMedCrossRefGoogle Scholar
  17. 17.
    Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D et al (2012) Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrob Resist Infect Control 1(1):11. doi: 10.1186/2047-2994-1-11 PubMedCrossRefGoogle Scholar
  18. 18.
    Centers for Disease Control and Prevention (CDC). Get Smart: Know When Antibiotics Work. Home page at:
  19. 19.
    Alvan G, Edlund C, Heddini A (2011) The global need for effective antibiotics—a summary of plenary presentations. Drug Resist Updat 14:70–76. doi: 10.1016/j.drup.2011.01.007 PubMedCrossRefGoogle Scholar
  20. 20.
    European Medicines Agency (EMA). The bacterial challenge—time to react a call to narrow the gap between multidrug-resistant bacteria in the EU and development of new antibacterial agents. Available online at:
  21. 21.
    European Antimicrobial Resistance Surveillance Network (EARS-Net). Home page at:
  22. 22.
    European Surveillance of Antimicrobial Consumption (ESAC). Home page at:
  23. 23.
    Grimes DA, Schulz KF (2002) Bias and causal associations in observational research. Lancet 359(19):248–252. doi: 10.1016/S0140-6736(02)07451-2 PubMedCrossRefGoogle Scholar
  24. 24.
    Jüni P, Altman DG, Egger M (2001) Systematic reviews in health care: assessing the quality of controlled clinical trials. BMJ 323(7303):42–46. doi: 10.1136/bmj.323.7303.42 PubMedCrossRefGoogle Scholar
  25. 25.
    Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin, BostonGoogle Scholar
  26. 26.
    Rothman KJ, Greenland S, Lash TL (2008) Modern epidemiology, 3rd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  27. 27.
    Grimes DA, Schulz KF (2002) An overview of clinical research: the lay of the land. Lancet 359(9300):57–61. doi: 10.1016/S0140-6736(02)07283-5 PubMedCrossRefGoogle Scholar
  28. 28.
    Funai EF, Rosenbush EJ, Lee MJ, Del Priore G (2001) Distribution of study designs in four major US journals of obstetrics and gynecology. Gynecol Obstet Invest 51:8–11PubMedCrossRefGoogle Scholar
  29. 29.
    Scales CD Jr, Norris RD, Peterson BL, Preminger GM, Dahm P (2005) Clinical research and statistical methods in the urology literature. J Urol 174:1374–1379PubMedCrossRefGoogle Scholar
  30. 30.
    D’Agata EMC, Green WK, Schulman G, Li H, Tang Y-W, Schaffner W (2001) Vancomycin-resistant enterococci among chronic hemodialysis patients: a prospective study of acquisition. Clin Infect Dis 32(1):23–29. doi: 10.1086/317549 PubMedCrossRefGoogle Scholar
  31. 31.
    Feikin DR, Dowell SF, Nwanyanwu OC, Klugman KP, Kazembe PN, Barat LM et al (2000) Increased carriage of trimethoprim/sulfamethoxazole-resistant Streptococcus pneumoniae in Malawian children after treatment for malaria with sulfadoxine/pyrimethamine. J Infect Dis 181(4):1501–1505. doi: 10.1086/315382 PubMedCrossRefGoogle Scholar
  32. 32.
    Woerther P-L, Angebault C, Jacquier H, Hugede H-C, Janssens A-C, Sayadi S et al (2011) Massive increase, spread, and exchange of extended spectrum β-lactamase-encoding genes among intestinal Enterobacteriaceae in hospitalized children with severe acute malnutrition in Niger. Clin Infect Dis 53:677–685. doi: 10.1093/cid/cir522 PubMedCrossRefGoogle Scholar
  33. 33.
    Ong DSY, Jongerden IP, Buiting AG, Leverstein-van Hall MA, Speelberg B, Kesecioglu J et al (2011) Antibiotic exposure and resistance development in Pseudomonas aeruginosa and Enterobacter species in intensive care units. Crit Care Med 39:2458–2463. doi: 10.1097/CCM.0b013e318225756d PubMedCrossRefGoogle Scholar
  34. 34.
    Donskey CJ, Chowdhry TK, Hecker MT, Hoyen CK, Hanrahan JA, Hujer AM et al (2000) Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N Engl J Med 343(26):1925–1932. doi: 10.1056/NEJM200012283432604 PubMedCrossRefGoogle Scholar
  35. 35.
    Lepelletier D, Cady A, Caroff N, Marraillac J, Reynaud A, Lucet J-C et al (2010) Imipenem-resistant Pseudomonas aeruginosa gastrointestinal carriage among hospitalized patients: risk factors and resistance mechanisms. Diagn Microbiol Infect Dis 66:1–6. doi: 10.1016/j.diagmicrobio.2009.08.014 PubMedCrossRefGoogle Scholar
  36. 36.
    Eveillard M, Schmit JL, Eb F (2002) Antimicrobial Use prior to the acquisition of multiresistant bacteria. Infect Control Hosp Epidemiol 23(3):155–158PubMedCrossRefGoogle Scholar
  37. 37.
    Grüneberg RN, Shaw EJ (1976) The influence of antibiotic treatment on resistance patterns of coliform bacilli in childhood urinary-tract infection. J Med Microbiol 9(2):233–237. doi: 10.1099/00222615-9-2-233 PubMedCrossRefGoogle Scholar
  38. 38.
    Kaye KS, Cosgrove S, Harris A, Eliopoulos GM, Carmeli Y (2001) Risk factors for emergence of resistance to broad-spectrum cephalosporins among Enterobacter spp. Antimicrob Agents Chemother 45:2628–2630. doi: 10.1128/AAC.45.9.2628-2630.2001 PubMedCrossRefGoogle Scholar
  39. 39.
    Chung A, Perera R, Brueggemann AB, Elamin AE, Harnden A, Mayon-White R et al (2007) Effect of antibiotic prescribing on antibiotic resistance in individual children in primary care: prospective cohort study. BMJ 335(7617):429. doi: 10.1136/bmj.39274.647465.BE PubMedCrossRefGoogle Scholar
  40. 40.
    Lepelletier D, Caroff N, Riochet D, Bizouarn P, Bourdeau A, Le Gallou F et al (2006) Risk-factors for gastrointestinal colonisation with resistant Enterobacteriaceae among hospitalised patients: a prospective study. Clin Microbiol Infect 12(10):974–979. doi: 10.1111/j.1469-0691.2006.01474.x PubMedCrossRefGoogle Scholar
  41. 41.
    Rodríguez-Baño J, Alcalá JC, Cisneros JM, Grill F, Oliver A, Horcajada JP et al (2008) Community infections caused by extended-spectrum β-lactamase-producing Escherichia coli. Arch Intern Med 168(17):1897–1902. doi: 10.1001/archinte.168.17.1897 PubMedCrossRefGoogle Scholar
  42. 42.
    Razazi K, Derde LP, Verachten M, Legrand P, Lesprit P, Brun-Buisson C (2012) Clinical impact and risk factors for colonization with extended-spectrum β-lactamase-producing bacteria in the intensive care unit. Intensive Care Med 38(11):1769–1778. doi: 10.1007/s00134-012-2675-0 PubMedCrossRefGoogle Scholar
  43. 43.
    Grimes DA, Schulz KF (2002) Cohort studies: marching towards outcomes. Lancet 359(9303):341–345. doi: 10.1016/S0140-6736(02)07500-1 PubMedCrossRefGoogle Scholar
  44. 44.
    Woodward M (2004) Epidemiology: study design and data analysis, 2nd edn. Taylor & Francis, Boca RatonGoogle Scholar
  45. 45.
    Kaye KS, Harris AD, Samore M, Carmeli Y (2005) The case–case–control study design: addressing the limitations of risk factor studies for antimicrobial resistance. Infect Control Hosp Epidemiol 26(4):346–351PubMedCrossRefGoogle Scholar
  46. 46.
    Schulz KF, Grimes DA (2002) Case–control studies: research in reverse. Lancet 359(2):431–434. doi: 10.1016/S0140-6736(02)07605-5 PubMedCrossRefGoogle Scholar
  47. 47.
    Harris AD, Karchmer TB, Carmeli Y, Samore MH (2001) Methodological principles of case–control studies that analyzed risk factors for antibiotic resistance: a systematic review. Clin Infect Dis 32(4):1055–1061. doi: 10.1086/319600 PubMedCrossRefGoogle Scholar
  48. 48.
    D’Agata EMC (2005) Methodologic issues of case–control studies: a review of established and newly recognized limitations. Infect Control Hosp Epidemiol 26:338–341. doi: 10.1086/502548 PubMedCrossRefGoogle Scholar
  49. 49.
    Harris AD, Samore MH, Lipsitch M, Kaye KS, Perencevich E, Carmeli Y (2002) Control-group selection importance in studies of antimicrobial resistance: examples applied to Pseudomonas aeruginosa, Enterococci, and Escherichia coli. Clin Infect Dis 34(12):1558–1563. doi: 10.1086/340533 PubMedCrossRefGoogle Scholar
  50. 50.
    D’Agata EMC, Cataldo MA, Cauda R, Tacconelli E (2006) The importance of addressing multidrug resistance and not assuming single-drug resistance in case–control studies. Infect Control Hosp Epidemiol 27:670–674. doi: 10.1086/505917 PubMedCrossRefGoogle Scholar
  51. 51.
    Harris AD, Carmeli Y, Samore MH, Kaye KS, Perencevich E (2005) Impact of severity of illness bias and control group misclassification bias in case–control studies of antimicrobial-resistant organisms. Infect Control Hosp Epidemiol 26(4):342–345PubMedCrossRefGoogle Scholar
  52. 52.
    Beekmann SE, Diekema DJ, Heilmann KP, Richter SS, Doern GV (2006) Macrolide use identified as risk factor for macrolide-resistant Streptococcus pneumoniae in a 17-center case–control study. Eur J Clin Microbiol Infect Dis 25:335–339. doi: 10.1007/s10096-006-0137-8 PubMedCrossRefGoogle Scholar
  53. 53.
    Troillet N, Samore MH, Carmeli Y (1997) Imipenem-resistant Pseudomonas aeruginosa: risk factors and antibiotic susceptibility patterns. Clin Infect Dis 25(5):1094–1098. doi: 10.1086/516092 PubMedCrossRefGoogle Scholar
  54. 54.
    Seaton RA, Steinke DT, Phillips G, MacDonald T, Davey PG (2000) Community antibiotic therapy, hospitalization and subsequent respiratory tract isolation of Haemophilus influenzae resistant to amoxycillin: a nested case–control study. J Antimicrob Chemother 46:307–309PubMedCrossRefGoogle Scholar
  55. 55.
    Loeb MB, Craven S, McGeer AJ, Simor AE, Bradley SF, Low DE et al (2003) Risk factors for resistance to antimicrobial agents among nursing home residents. Am J Epidemiol 157(1):40–47. doi: 10.1093/aje/kwf173 PubMedCrossRefGoogle Scholar
  56. 56.
    Hillier S, Roberts Z, Dunstan F, Butler C, Howard A, Palmer S (2007) Prior antibiotics and risk of antibiotic-resistant community-acquired urinary tract infection: a case–control study. J Antimicrob Chemother 60:92–99. doi: 10.1093/jac/dkm141 PubMedCrossRefGoogle Scholar
  57. 57.
    Steinke DT, Seaton RA, Phillips G, MacDonald TM, Davey PG (2001) Prior trimethoprim use and trimethoprim-resistant urinary tract infection: a nested case–control study with multivariate analysis for other risk factors. J Antimicrob Chemother 47:781–787PubMedCrossRefGoogle Scholar
  58. 58.
    Colodner R, Nuri Y, Chazan B, Raz R (2008) Community-acquired and hospital-acquired candiduria: comparison of prevalence and clinical characteristics. Eur J Clin Microbiol Infect Dis 27:301–305. doi: 10.1007/s10096-007-0438-6 PubMedCrossRefGoogle Scholar
  59. 59.
    Bhavnani SM, Drake JA, Forrest A, Deinhart JA, Jones RN, Biedenbach DJ et al (2000) A nationwide, multicenter, case–control study comparing risk factors, treatment, and outcome for vancomycin-resistant and -susceptible enterococcal bacteremia. Diagn Microbiol Infect Dis 36:145–158. doi: 10.1016/S0732-8893(99)00136-4 PubMedCrossRefGoogle Scholar
  60. 60.
    Costelloe C, Lovering A, Montgomery A, Lewis D, McNulty C, Hay AD (2012) Effect of antibiotic prescribing in primary care on meticillin-resistant Staphylococcus aureus carriage in community-resident adults: a controlled observational study. Int J Antimicrob Agents 39:135–141. doi: 10.1016/j.ijantimicag.2011.09.022 PubMedCrossRefGoogle Scholar
  61. 61.
    Arason VA, Sigurdsson JA, Erlendsdottir H, Gudmundsson S, Kristinsson KG (2006) The role of antimicrobial Use in the epidemiology of resistant pneumococci: a 10-year follow up. Microb Drug Resist 12:169–176. doi: 10.1089/mdr.2006.12.169 PubMedCrossRefGoogle Scholar
  62. 62.
    Lo W-T, Lin W-J, Tseng M-H, Lu J-J, Lee S-Y, Chu M-L et al (2007) Nasal carriage of a single clone of community-acquired methicillin-resistant Staphylococcus aureus among kindergarten attendees in northern Taiwan. BMC Infect Dis 7:51. doi: 10.1186/1471-2334-7-51 PubMedCrossRefGoogle Scholar
  63. 63.
    Woerther P-L, Angebault C, Lescat M, Ruppé E, Skurnik D, Mniai AE et al (2010) Emergence and dissemination of extended-spectrum beta-lactamase-producing Escherichia coli in the community: lessons from the study of a remote and controlled population. J Infect Dis 202(4):515–523. doi: 10.1086/654883 PubMedCrossRefGoogle Scholar
  64. 64.
    Cook TD, Campbell DT (1986) The causal assumptions of quasi-experimental practice. Synthese 68:141–180. doi: 10.1007/BF00413970 Google Scholar
  65. 65.
    Harbour R, Miller J (2001) A new system for grading recommendations in evidence based guidelines. BMJ 323(11):334–336. doi: 10.1136/bmj.323.7308.334 PubMedCrossRefGoogle Scholar
  66. 66.
    Guyatt GH, Haynes RB, Jaeschke RZ, Cook DJ, Green L, Naylor CD et al (2000) Users’ guides to the medical literature. XXV. Evidence-based medicine: principles for applying the users’ guides to patient care. JAMA 284(10):1290–1296. doi: 10.1001/jama.284.10.1290 PubMedCrossRefGoogle Scholar
  67. 67.
    Concato J, Shah N, Horwitz RI (2000) Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med 342(25):1887–1892. doi: 10.1056/NEJM200006223422507 PubMedCrossRefGoogle Scholar
  68. 68.
    Ghaffar F, Friedland IR, Katz K, Muniz LS, Smith JL, Davis P et al (1999) Increased carriage of resistant non-pneumococcal alpha-hemolytic streptococci after antibiotic therapy. J Pediatr 135:618–623PubMedCrossRefGoogle Scholar
  69. 69.
    Malhotra-Kumar S, Lammens C, Coenen S, Van Herck K, Goossens H (2007) Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, placebo-controlled study. Lancet 369(9560):482–490. doi: 10.1016/S0140-6736(07)60235-9 PubMedCrossRefGoogle Scholar
  70. 70.
    Nord CE, Peterson J, Ambruzs M, Fisher AC (2009) Levofloxacin versus azithromycin on the oropharyngeal carriage and selection of antibacterial-resistant streptococci in the microflora of healthy adults. Curr Med Res Opin 25:1461–1467. doi: 10.1185/03007990902953468 PubMedCrossRefGoogle Scholar
  71. 71.
    Schrag SJ, Peña C, Fernández J, Sánchez J, Gómez V, Pérez E et al (2001) Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: a randomized trial. JAMA 286(1):49–56. doi: 10.1001/jama.286.1.49 PubMedCrossRefGoogle Scholar
  72. 72.
    Toltzis P, Dul M, O’Riordan MA, Toltzis H, Blumer JL (2007) Comparative effects of single-dose ceftriaxone versus three oral antibiotic regimens on stool colonization by resistant bacilli in children. Pediatr Infect Dis J 26:25–30. doi: 10.1097/01.inf.0000247130.11902.64 PubMedCrossRefGoogle Scholar
  73. 73.
    Berg HF, Tjhie JHT, Scheffer G-J, Peeters MF, van Keulen PHJ, Kluytmans JAJW et al (2004) Emergence and persistence of macrolide resistance in oropharyngeal flora and elimination of nasal carriage of Staphylococcus aureus after therapy with slow-release clarithromycin: a randomized, double-blind, placebo-controlled study. Antimicrob Agents Chemother 48:4183–4188. doi: 10.1128/AAC.48.11.4183-4188.2004 PubMedCrossRefGoogle Scholar
  74. 74.
    Kastner U, Guggenbichler JP (2001) Influence of macrolide antibiotics on promotion of resistance in the oral flora of children. Infection 29:251–256. doi: 10.1007/s15010-001-1072-3 PubMedCrossRefGoogle Scholar
  75. 75.
    Chang S-C, Hsieh S-M, Chen M-L, Sheng W-H, Chen Y-C (2000) Oral fusidic acid fails to eradicate methicillin-resistant Staphylococcus aureus colonization and results in emergence of fusidic acid-resistant strains. Diagn Microbiol Infect Dis 36:131–136. doi: 10.1016/S0732-8893(99)00116-9 PubMedCrossRefGoogle Scholar
  76. 76.
    Gribble MJ, Chow AW, Naiman SC, Smith JA, Bowie WR, Sacks SL et al (1983) Prospective randomized trial of piperacillin monotherapy versus carboxypenicillin–aminoglycoside combination regimens in the empirical treatment of serious bacterial infections. Antimicrob Agents Chemother 24(3):388–393. doi: 10.1128/AAC.24.3.388 PubMedCrossRefGoogle Scholar
  77. 77.
    Schulz KF, Grimes DA (2002) Generation of allocation sequences in randomised trials: chance, not choice. Lancet 359(9305):515–519. doi: 10.1016/S0140-6736(02)07683-3 PubMedCrossRefGoogle Scholar
  78. 78.
    Schulz KF, Grimes DA (2002) Allocation concealment in randomised trials: defending against deciphering. Lancet 359(16):614–618. doi: 10.1016/S0140-6736(02)07750-4 PubMedCrossRefGoogle Scholar
  79. 79.
    Schulz KF, Chalmers I, Hayes RJ, Altman DG (1995) Empirical evidence of bias. Dimensions of methodological quality associated with estimates of treatment effects in controlled trials. JAMA 273(5):408–412PubMedCrossRefGoogle Scholar
  80. 80.
    Schulz KF, Grimes DA (2002) Blinding in randomised trials: hiding who got what. Lancet 359(9307):696–700. doi: 10.1016/S0140-6736(02)07816-9 PubMedCrossRefGoogle Scholar
  81. 81.
    Schulz KF (1996) Randomised trials, human nature, and reporting guidelines. Lancet 348(9027):596–598. doi: 10.1016/S0140-6736(96)01201-9 PubMedCrossRefGoogle Scholar
  82. 82.
    Harris AD, Bradham DD, Baumgarten M, Zuckerman IH, Fink JC, Perencevich EN (2004) The use and interpretation of quasi-experimental studies in infectious diseases. Clin Infect Dis 38(11):1586–1591. doi: 10.1086/420936 PubMedCrossRefGoogle Scholar
  83. 83.
    Harris AD, Lautenbach E, Perencevich E (2005) A systematic review of quasi-experimental study designs in the fields of infection control and antibiotic resistance. Clin Infect Dis 41(7):77–82. doi: 10.1086/430713 PubMedGoogle Scholar
  84. 84.
    de Bruin MA, Riley LW (2007) Does vancomycin prescribing intervention affect vancomycin-resistant enterococcus infection and colonization in hospitals? A systematic review. BMC Infect Dis 7:24. doi: 10.1186/1471-2334-7-24 PubMedCrossRefGoogle Scholar
  85. 85.
    Shardell M, Harris AD, El-Kamary SS, Furuno JP, Miller RR, Perencevich EN (2007) Statistical analysis and application of quasi experiments to antimicrobial resistance intervention studies. Clin Infect Dis 45(7):901–907. doi: 10.1086/521255 PubMedCrossRefGoogle Scholar
  86. 86.
    Harbarth S, Samore MH (2008) Interventions to control MRSA: high time for time-series analysis? J Antimicrob Chemother 62(3):431–433. doi: 10.1093/jac/dkn240 PubMedCrossRefGoogle Scholar
  87. 87.
    Sundqvist M, Geli P, Andersson DI, Sjölund-Karlsson M, Runehagen A, Cars H et al (2010) Little evidence for reversibility of trimethoprim resistance after a drastic reduction in trimethoprim use. J Antimicrob Chemother 65:350–360. doi: 10.1093/jac/dkp387 PubMedCrossRefGoogle Scholar
  88. 88.
    Lafaurie M, Porcher R, Donay J-L, Touratier S, Molina J-M (2012) Reduction of fluoroquinolone use is associated with a decrease in methicillin-resistant Staphylococcus aureus and fluoroquinolone-resistant Pseudomonas aeruginosa isolation rates: a 10 year study. J Antimicrob Chemother 67:1010–1015. doi: 10.1093/jac/dkr555 PubMedCrossRefGoogle Scholar
  89. 89.
    Gottesman BS, Carmeli Y, Shitrit P, Chowers M (2009) Impact of quinolone restriction on resistance patterns of Escherichia coli isolated from urine by culture in a community setting. Clin Infect Dis 49(6):869–875. doi: 10.1086/605530 PubMedCrossRefGoogle Scholar
  90. 90.
    Madaras-Kelly KJ, Remington RE, Lewis PG, Stevens DL (2006) Evaluation of an intervention designed to decrease the rate of nosocomial methicillin-resistant Staphylococcus aureus infection by encouraging decreased fluoroquinolone use. Infect Control Hosp Epidemiol 27(2):155–169PubMedCrossRefGoogle Scholar
  91. 91.
    Bradley SJ, Wilson ALT, Allen MC, Sher HA, Goldstone AH, Scott GM (1999) The control of hyperendemic glycopeptide-resistant Enterococcus spp. on a haematology unit by changing antibiotic usage. J Antimicrob Chemother 43(2):261–266. doi: 10.1093/jac/43.2.261 PubMedCrossRefGoogle Scholar
  92. 92.
    Lipworth AD, Hyle EP, Fishman NO, Nachamkin I, Bilker WB, Marr AM et al (2006) Limiting the emergence of extended-spectrum β-lactamase-producing Enterobacteriaceae: influence of patient population characteristics on the response to antimicrobial formulary interventions. Infect Control Hosp Epidemiol 27(3):279–286PubMedCrossRefGoogle Scholar
  93. 93.
    Borer A, Eskira S, Nativ R, Saidel-Odes L, Riesenberg K, Livshiz-Riven I et al (2011) A multifaceted intervention strategy for eradication of a hospital-wide outbreak caused by carbapenem-resistant Klebsiella pneumoniae in Southern Israel. Infect Control Hosp Epidemiol 32:1158–1165. doi: 10.1086/662620 PubMedCrossRefGoogle Scholar
  94. 94.
    Toltzis P, Yamashita T, Vilt L, Green M, Morrissey A, Spinner-Block S et al (1998) Antibiotic restriction does not alter endemic colonization with resistant gram-negative rods in a pediatric intensive care unit. Crit Care Med 26:1893–1899PubMedCrossRefGoogle Scholar
  95. 95.
    Charbonneau P, Parienti JJ, Thibon P, Ramakers M, Daubin C, du Cheyron D et al (2006) Fluoroquinolone use and methicillin-resistant Staphylococcus aureus isolation rates in hospitalized patients: a quasi experimental study. Clin Infect Dis 42(6):778–784. doi: 10.1086/500319 PubMedCrossRefGoogle Scholar
  96. 96.
    de Man P, Verhoeven BAN, Verbrugh HA, Vos MC, van den Anker JN (2000) An antibiotic policy to prevent emergence of resistant bacilli. Lancet 355:973–978. doi: 10.1016/S0140-6736(00)90015-1 PubMedCrossRefGoogle Scholar
  97. 97.
    Butler CC, Dunstan F, Heginbothom M, Mason B, Roberts Z, Hillier S et al (2007) Containing antibiotic resistance: decreased antibiotic-resistant coliform urinary tract infections with reduction in antibiotic prescribing by general practices. Br J Gen Pract 57:785–792PubMedGoogle Scholar
  98. 98.
    Goossens H, Ferech M, Vander Stichele R, Elseviers M; ESAC Project Group (2005) Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365(9459):579–587. doi: 10.1016/S0140-6736(05)17907-0 PubMedGoogle Scholar
  99. 99.
    Donnan PT, Wei L, Steinke DT, Phillips G, Clarke R, Noone A et al (2004) Presence of bacteriuria caused by trimethoprim resistant bacteria in patients prescribed antibiotics: multilevel model with practice and individual patient data. BMJ 328(7451):1297PubMedCrossRefGoogle Scholar
  100. 100.
    Vander Stichele RH, Elseviers MM, Ferech M, Blot S, Goossens H; ESAC Project Group (2004) European Surveillance of Antimicrobial Consumption (ESAC): data collection performance and methodological approach. Br J Clin Pharmacol 58(4):419–428. doi: 10.1111/j.1365-2125.2004.02164.x PubMedCrossRefGoogle Scholar
  101. 101.
    Greenland S, Robins J (1994) Invited commentary: ecologic studies—biases, misconceptions, and counterexamples. Am J Epidemiol 139(8):747–760PubMedGoogle Scholar
  102. 102.
    Harbarth S, Harris AD, Carmeli Y, Samore MH (2001) Parallel analysis of individual and aggregated data on antibiotic exposure and resistance in gram-negative bacilli. Clin Infect Dis 33(9):1462–1468. doi: 10.1086/322677 PubMedCrossRefGoogle Scholar
  103. 103.
    Muller A, Mauny F, Talon D, Donnan PT, Harbarth S, Bertrand X (2006) Effect of individual- and group-level antibiotic exposure on MRSA isolation: a multilevel analysis. J Antimicrob Chemother 58(4):878–881. doi: 10.1093/jac/dkl343 PubMedCrossRefGoogle Scholar
  104. 104.
    Campbell MJ, Donner A, Klar N (2007) Developments in cluster randomized trials and Statistics in Medicine. Stat Med 26:2–19. doi: 10.1002/sim.2731 PubMedCrossRefGoogle Scholar
  105. 105.
    Klar N, Donner A (2001) Current and future challenges in the design and analysis of cluster randomization trials. Stat Med 20:3729–3740. doi: 10.1002/sim.1115 PubMedCrossRefGoogle Scholar
  106. 106.
    Loeb MB (2002) Application of the development stages of a cluster randomized trial to a framework for valuating complex health interventions. BMC Health Serv Res 2(1):13PubMedCrossRefGoogle Scholar
  107. 107.
    de Smet AMGA, Kluytmans JAJW, Cooper BS, Mascini EM, Benus RFJ, van der Werf TS et al (2009) Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med 360(1):20–31. doi: 10.1056/NEJMoa0800394 PubMedCrossRefGoogle Scholar
  108. 108.
    de Smet AMGA, Kluytmans JAJW, Blok HEM, Mascini EM, Benus RFJ, Bernards AT et al (2011) Selective digestive tract decontamination and selective oropharyngeal decontamination and antibiotic resistance in patients in intensive-care units: an open-label, clustered group-randomised, crossover study. Lancet Infect Dis 11:372–380. doi: 10.1016/S1473-3099(11)70035-4 PubMedCrossRefGoogle Scholar
  109. 109.
    Skalet AH, Cevallos V, Ayele B, Gebre T, Zhou Z, Jorgensen JH et al (2010) Antibiotic selection pressure and macrolide resistance in nasopharyngeal Streptococcus pneumoniae: a cluster-randomized clinical trial. PLoS Med 7(12):e1000377. doi: 10.1371/journal.pmed.1000377 PubMedCrossRefGoogle Scholar
  110. 110.
    Parm Ü, Metsvaht T, Sepp E, Ilmoja M-L, Pisarev H, Pauskar M et al (2010) Impact of empiric antibiotic regimen on bowel colonization in neonates with suspected early onset sepsis. Eur J Clin Microbiol Infect Dis 29:807–816. doi: 10.1007/s10096-010-0931-1 PubMedCrossRefGoogle Scholar
  111. 111.
    Hadorn DC, Baker D, Hodges JS, Hicks N (1996) Rating the quality of evidence for clinical practice guidelines. J Clin Epidemiol 49:749–754. doi: 10.1016/0895-4356(96)00019-4 PubMedCrossRefGoogle Scholar
  112. 112.
    Harris RP, Helfand M, Woolf SH, Lohr KN, Mulrow CD, Teutsch SM et al (2001) Current methods of the U.S. Preventive Services Task Force: a review of the process. Am J Prev Med 20:21–35. doi: 10.1016/S0749-3797(01)00261-6 PubMedCrossRefGoogle Scholar
  113. 113.
    McKee M, Britton A, Black N, McPherson K, Sanderson C, Bain C (1999) Methods in health services research. Interpreting the evidence: choosing between randomised and non-randomised studies. BMJ 319(7205):312–315PubMedCrossRefGoogle Scholar
  114. 114.
    Demissie K, Mills OF, Rhoads GG (1998) Empirical comparison of the results of randomized controlled trials and case–control studies in evaluating the effectiveness of screening mammography. J Clin Epidemiol 51:81–91. doi: 10.1016/S0895-4356(97)00243-6 PubMedCrossRefGoogle Scholar
  115. 115.
    LeLorier J, Grégoire G, Benhaddad A, Lapierre J, Derderian F (1997) Discrepancies between meta-analyses and subsequent large randomized, controlled trials. N Engl J Med 337(8):536–542. doi: 10.1056/NEJM199708213370806 PubMedCrossRefGoogle Scholar
  116. 116.
    Blettner M, Sauerbrei W, Schlehofer B, Scheuchenpflug T, Friedenreich C (1999) Traditional reviews, meta-analyses and pooled analyses in epidemiology. Int J Epidemiol 28(1):1–9. doi: 10.1093/ije/28.1.1 PubMedCrossRefGoogle Scholar
  117. 117.
    Lau J, Ioannidis JP, Schmid CH (1998) Summing up evidence: one answer is not always enough. Lancet 351(9096):123–127. doi: 10.1016/S0140-6736(97)08468-7 PubMedCrossRefGoogle Scholar
  118. 118.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA 283(15):2008–2012. doi: 10.1001/jama.283.15.2008 PubMedCrossRefGoogle Scholar
  119. 119.
    Ioannidis JP, Cappelleri JC, Lau J (1998) Meta-analyses and large randomized, controlled trials. N Engl J Med 338(1):59. doi: 10.1056/NEJM199801013380112, author reply 61–62PubMedCrossRefGoogle Scholar
  120. 120.
    Stroup DF, Thacker SB, Olson CM, Glass RM, Hutwagner L (2001) Characteristics of meta-analyses related to acceptance for publication in a medical journal. J Clin Epidemiol 54:655–660. doi: 10.1016/S0895-4356(00)00362-0 PubMedCrossRefGoogle Scholar
  121. 121.
    Tacconelli E, De Angelis G, Cataldo MA, Pozzi E, Cauda R (2008) Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J Antimicrob Chemother 61:26–38. doi: 10.1093/jac/dkm416 PubMedCrossRefGoogle Scholar
  122. 122.
    Carmeli Y, Samore MH, Huskins C (1999) The association between antecedent vancomycin treatment and hospital-acquired vancomycin-resistant enterococci: a meta-analysis. Arch Intern Med 159(20):2461–2468PubMedCrossRefGoogle Scholar
  123. 123.
    Gafter-Gvili A, Paul M, Fraser A, Leibovici L (2007) Effect of quinolone prophylaxis in afebrile neutropenic patients on microbial resistance: systematic review and meta-analysis. J Antimicrob Chemother 59(1):5–22. doi: 10.1093/jac/dkl425 PubMedCrossRefGoogle Scholar
  124. 124.
    Bliziotis IA, Samonis G, Vardakas KZ, Chrysanthopoulou S, Falagas ME (2005) Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clin Infect Dis 41(15):149–158. doi: 10.1086/430912 PubMedCrossRefGoogle Scholar
  125. 125.
    Counsell C (1997) Formulating questions and locating primary studies for inclusion in systematic reviews. Ann Intern Med 127(5):380–387PubMedGoogle Scholar
  126. 126.
    Meade MO, Richardson WS (1997) Selecting and appraising studies for a systematic review. Ann Intern Med 127(7):531–537PubMedGoogle Scholar
  127. 127.
    Lau J, Ioannidis JPA, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127(9):820–826PubMedGoogle Scholar
  128. 128.
    Thompson SG (1994) Systematic review: why sources of heterogeneity in meta-analysis should be investigated. BMJ 309(6965):1351–1355. doi: 10.1136/bmj.309.6965.1351 PubMedCrossRefGoogle Scholar
  129. 129.
    Higgins JPT, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. doi: 10.1002/sim.1186 PubMedCrossRefGoogle Scholar
  130. 130.
    Weinstein RA, Bonten MJM, Austin DJ, Lipsitch M (2001) Understanding the spread of antibiotic resistant pathogens in hospitals: mathematical models as tools for control. Clin Infect Dis 33(10):1739–1746. doi: 10.1086/323761 CrossRefGoogle Scholar
  131. 131.
    Grundmann H, Hellriegel B (2006) Mathematical modelling: a tool for hospital infection control. Lancet Infect Dis 6:39–45. doi: 10.1016/S1473-3099(05)70325-X PubMedCrossRefGoogle Scholar
  132. 132.
    D’Agata EMC, Magal P, Olivier D, Ruan S, Webb GF (2007) Modeling antibiotic resistance in hospitals: the impact of minimizing treatment duration. J Theor Biol 249(3):487–499. doi: 10.1016/j.jtbi.2007.08.011 PubMedCrossRefGoogle Scholar
  133. 133.
    Geli P, Laxminarayan R, Dunne M, Smith DL (2012) “One-Size-Fits-All”? Optimizing treatment duration for bacterial infections. PLoS One 7:e29838. doi: 10.1371/journal.pone.0029838 PubMedCrossRefGoogle Scholar
  134. 134.
    D’Agata EMC, Dupont-Rouzeyrol M, Magal P, Olivier D, Ruan S (2008) The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria. PLoS One 3:e4036. doi: 10.1371/journal.pone.0004036 PubMedCrossRefGoogle Scholar
  135. 135.
    Bonhoeffer S, Lipsitch M, Levin BR (1997) Evaluating treatment protocols to prevent antibiotic resistance. Proc Natl Acad Sci U S A 94(22):12106–12111PubMedCrossRefGoogle Scholar
  136. 136.
    Bergstrom CT, Lo M, Lipsitch M (2004) Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Natl Acad Sci U S A 101(36):13285–13290. doi: 10.1073/pnas.0402298101 PubMedCrossRefGoogle Scholar
  137. 137.
    Kouyos RD, Abel Zur Wiesch P, Bonhoeffer S (2011) Informed switching strongly decreases the prevalence of antibiotic resistance in hospital wards. PLoS Comput Biol 7(3):e1001094. doi: 10.1371/journal.pcbi.1001094 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire de Bacteriologie, Hôpital Bichat—Claude-Bernard, Assistance Publique–Hôpitaux de ParisEA3964, Faculté de Médecine Xavier Bichat, Université Paris DiderotParisFrance

Personalised recommendations