The gut microbiota of a patient with resistant tuberculosis is more comprehensively studied by culturomics than by metagenomics

  • G. Dubourg
  • J. C. Lagier
  • F. Armougom
  • C. Robert
  • I. Hamad
  • P. Brouqui
  • D. Raoult
Article

Abstract

Gut microbiota consists of 1010 bacteria per gram of stool. Many antibiotic regimens induce a reduction in both the diversity and the abundance of the gut flora. We analyzed one stool sample collected from a patient treated for drug-resistant Mycobacterium tuberculosis and who ultimately died from pneumonia due to a Streptococcus pneumoniae 10 months later. We performed microscopic observation, used 70 culture conditions (microbial culturomics) with identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and 16S rRNA amplification and sequencing, pyrosequencing, and 18S rRNA amplification and clone sequencing. Electron and optical microscopic observations revealed the presence of yeast, but no bacterial species were observed. By culture, only 39 bacterial species were identified, including one new species, as well as three species that have not been previously observed in the human gut. The pyrosequencing showed only 18 phylotypes, detecting a lower number of bacterial species than the culture techniques. Only two phylotypes overlapped with culturomics. In contrast, an amount of chloroplasts was found. Additionally, specific molecular eukaryote detection found three fungal species. We recovered, for the first time, more cultivable than non-cultivable bacterial species in a patient with a low bacterial load in the gut, demonstrating the depth bias of pyrosequencing. We propose that the desertification of gut microbiota in this patient is a reflection of the total body microbiota and may have contributed to the invasive infection of S. pneumoniae. This finding suggests that caution should be applied when treating patients with broad-spectrum antibiotics, and preventive measures should be taken in order to avoid invasive infection.

Supplementary material

10096_2012_1787_MOESM1_ESM.docx (37 kb)
ESM 1(DOCX 36 kb)

References

  1. 1.
    Raoult D (2012) Editorial. Clin Microbiol Infect 18(Suppl 4):1PubMedCrossRefGoogle Scholar
  2. 2.
    Finegold SM, Attebery HR, Sutter VL (1974) Effect of diet on human fecal flora: comparison of Japanese and American diets. Am J Clin Nutr 27:1456–1469PubMedGoogle Scholar
  3. 3.
    Robinson CJ, Young VB (2010) Antibiotic administration alters the community structure of the gastrointestinal microbiota. Gut Microbes 1:279–284PubMedCrossRefGoogle Scholar
  4. 4.
    Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280PubMedCrossRefGoogle Scholar
  5. 5.
    Antonopoulos DA, Huse SM, Morrison HG, Schmidt TM, Sogin ML, Young VB (2009) Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect Immun 77:2367–2375PubMedCrossRefGoogle Scholar
  6. 6.
    Bartosch S, Fite A, Macfarlane GT, McMurdo ME (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70:3575–3581PubMedCrossRefGoogle Scholar
  7. 7.
    Sullivan A, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1:101–114PubMedCrossRefGoogle Scholar
  8. 8.
    Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108:4554–4561PubMedCrossRefGoogle Scholar
  9. 9.
    Finegold SM, Sutter VL, Sugihara PT, Elder HA, Lehmann SM, Phillips RL (1977) Fecal microbial flora in Seventh Day Adventist populations and control subjects. Am J Clin Nutr 30:1781–1792PubMedGoogle Scholar
  10. 10.
    Moore WE, Holdeman LV (1974) Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol 27:961–979PubMedGoogle Scholar
  11. 11.
    Moore WE, Holdeman LV (1974) Special problems associated with the isolation and identification of intestinal bacteria in fecal flora studies. Am J Clin Nutr 27:1450–1455PubMedGoogle Scholar
  12. 12.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCrossRefGoogle Scholar
  13. 13.
    Dubourg G, Lagier JC, Armougom F, Robert C, Audoly G, Papazian F, Raoult D (2012) High-level colonization of the human gut by Verrucomicrobia after broad-spectrum antibiotic treatment. Int J Antimicrob Agents (in press)Google Scholar
  14. 14.
    Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, Trape JF, Koonin EV, La Scola B, Raoult D (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185–1193. doi:10.1111/1469-0691.12023 PubMedGoogle Scholar
  15. 15.
    Mishra AK, Gimenez G, Lagier JC, Robert C, Raoult D, Fournier PE (2012) Non-contiguous finished genome sequence and description of Alistipes senegalensis sp. nov. Stand Genomic Sci 6:304–314CrossRefGoogle Scholar
  16. 16.
    Kokcha S, Mishra AK, Lagier JC, Million M, Leroy Q, Raoult D, Fournier PE (2012) Non contiguous-finished genome sequence and description of Bacillus timonensis sp. nov. Stand Genomic Sci 6:346–355PubMedCrossRefGoogle Scholar
  17. 17.
    Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE (2012) Non-contiguous finished genome sequence and description of Clostridium senegalense sp. nov. Stand Genomic Sci 6:386–395PubMedGoogle Scholar
  18. 18.
    Mishra AK, Lagier JC, Robert C, Raoult D, Fournier PE (2012) Non contiguous-finished genome sequence and description of Peptoniphilus timonensis sp. nov. Stand Genomic Sci 7(1). doi:10.4056/sigs.2956294
  19. 19.
    Mishra AK, Lagier JC, Rivet R, Raoult D, Fournier PE (2012) Non-contiguous finished genome sequence and description of Paenibacillus senegalensis sp. nov. Stand Genomic Sci 7(1). doi:10.4056/sigs.3056450
  20. 20.
    Lagier JC, Armougom F, Mishra AK, Nguyen TT, Raoult D, Fournier PE (2012) Non-contiguous finished genome sequence and description of Alistipes timonensis sp. nov. Stand Genomic Sci 6:315–324PubMedGoogle Scholar
  21. 21.
    Lagier JC, El Karkouri K, Nguyen TT, Armougom F, Raoult D, Fournier PE (2012) Non-contiguous finished genome sequence and description of Anaerococcus senegalensis sp. nov. Stand Genomic Sci 6:116–125PubMedCrossRefGoogle Scholar
  22. 22.
    Silva JM, Fuchs SC, Barcellos NT, Zavascki AP (2009) Treatment of extensively drug-resistant tuberculosis. Lancet 373:27–28PubMedCrossRefGoogle Scholar
  23. 23.
    García-Suárez MM, Cron LE, Suárez-Alvarez B, Villaverde R, González-Rodríguez I, Vázquez F, Hermans PW, Méndez FJ (2009) Diagnostic detection of Streptococcus pneumoniae PpmA in urine. Clin Microbiol Infect 15:443–453PubMedCrossRefGoogle Scholar
  24. 24.
    Carvalho Mda G, Tondella ML, McCaustland K, Weidlich L, McGee L, Mayer LW, Steigerwalt A, Whaley M, Facklam RR, Fields B, Carlone G, Ades EW, Dagan R, Sampson JS (2007) Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA. J Clin Microbiol 45:2460–2466CrossRefGoogle Scholar
  25. 25.
    Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551PubMedCrossRefGoogle Scholar
  26. 26.
    Zoetendal EG, Booijink CC, Klaassens ES, Heilig HG, Kleerebezem M, Smidt H, de Vos WM (2006) Isolation of RNA from bacterial samples of the human gastrointestinal tract. Nat Protoc 1:954–959PubMedCrossRefGoogle Scholar
  27. 27.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCrossRefGoogle Scholar
  28. 28.
    Giongo A, Davis-Richardson AG, Crab DB, Triplett EW (2010) TaxCollector: modifying current 16S rRNA databases for the rapid classification at six taxonomic levels. Diversity 2:1015–1025CrossRefGoogle Scholar
  29. 29.
    El Khéchine A, Henry M, Raoult D, Drancourt M (2009) Detection of Mycobacterium tuberculosis complex organisms in the stools of patients with pulmonary tuberculosis. Microbiology 155:2384–2389PubMedCrossRefGoogle Scholar
  30. 30.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedCrossRefGoogle Scholar
  31. 31.
    Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O’Toole PW (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38:e200PubMedCrossRefGoogle Scholar
  32. 32.
    Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F, Affourtit J, Egholm M, Henrissat B, Knight R, Gordon JI (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A 107:7503–7508PubMedCrossRefGoogle Scholar
  33. 33.
    Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Müller G, Stokholm J, Smith B, Krogfelt KA (2011) Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128:646–652PubMedCrossRefGoogle Scholar
  34. 34.
    Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L, Jenmalm MC (2012) Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 129:434–440PubMedCrossRefGoogle Scholar
  35. 35.
    Preisler HD, Goldstein IM, Henderson ES (1970) Gastrointestinal “sterilization” in the treatment of patients with acute leukemia. Cancer 26:1076–1081PubMedCrossRefGoogle Scholar
  36. 36.
    Bremer K, Wanntorp HE (1981) A cladistic classification of green plants. Nord J Bot 1:1–3CrossRefGoogle Scholar
  37. 37.
    Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177PubMedCrossRefGoogle Scholar
  38. 38.
    Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol 67:301–320CrossRefGoogle Scholar
  39. 39.
    Knights D, Costello EK, Knight R (2011) Supervised classification of human microbiota. FEMS Microbiol Rev 35:343–359PubMedCrossRefGoogle Scholar
  40. 40.
    Bousbia S, Papazian L, La Scola B, Raoult D (2010) Detection of plant DNA in the bronchoalveolar lavage of patients with ventilator-associated pneumonia. PLoS One 5:e11298PubMedCrossRefGoogle Scholar
  41. 41.
    Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273PubMedCrossRefGoogle Scholar
  42. 42.
    Schwartz S, Friedberg I, Ivanov IV, Davidson LA, Goldsby JS, Dahl DB, Herman D, Wang M, Donovan SM, Chapkin RS (2012) A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol 13:r32PubMedCrossRefGoogle Scholar
  43. 43.
    Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A (2011) Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci U S A 108:5354–5359PubMedCrossRefGoogle Scholar
  44. 44.
    Licciardi PV, Toh ZQ, Dunne E, Wong SS, Mulholland EK, Tang M, Robins-Browne RM, Satzke C (2012) Protecting against pneumococcal disease: critical interactions between probiotics and the airway microbiome. PLoS Pathog 8:e1002652PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. Dubourg
    • 1
  • J. C. Lagier
    • 1
  • F. Armougom
    • 1
  • C. Robert
    • 1
  • I. Hamad
    • 1
  • P. Brouqui
    • 1
  • D. Raoult
    • 1
    • 2
  1. 1.Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095MarseilleFrance
  2. 2.Faculté de MédecineURMITE, UM63 CNRS 7278, IRD 198, INSERM 1095Marseille cedex 5France

Personalised recommendations