Skip to main content
Log in

Antimicrobial susceptibility and synergy studies of cystic fibrosis sputum by direct sputum sensitivity testing

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Standard disc diffusion antimicrobial susceptibility testing (C+S) on individual Pseudomonas aeruginosa colonial morphotypes cultured from cystic fibrosis (CF) sputum has questionable clinical relevance. Direct sputum sensitivity testing (DSST) is a whole-sputum susceptibility test that removes bias associated with selecting individual colonial morphotypes. We sought to determine whether, in principle, the results from DSST support the possibility of improved clinical relevance compared with C+S. Individual (DSSTi) and combination (DSST) susceptibility to gentamicin, tobramycin, ceftazidime and meropenem were determined on 130 sputum samples referred from CF subjects with antibiotic-resistant chronic Gram-negative endobronchial infection. DSSTi and concurrent C+S were compared for categorical susceptibility, synergistic combinations were evaluated and the combination DSST efficacy index (DEI) calculated. Meropenem and tobramycin were the most active individual antibiotics by DSSTi on 89 P. aeruginosa-predominant samples, with 62 % of samples sensitive to each. C+S and DSSTi showed poor agreement (κ ranging from 0.02 to 0.6), discordance ranging from 20 % (meropenem) to 49 % (tobramycin), with DSSTi demonstrating both increased susceptibility and increased resistance. The combination that most frequently had the highest DEI was tobramycin + meropenem, occurring in 76 % of samples. DSSTi appears to be reproducible, yields different antimicrobial susceptibility results from C+S without simply identifying the most resistant isolates and DSST identifies the most effective in vitro antibiotic combinations, providing preliminary proof of concept of the potentially improved clinical relevance of whole-sputum testing. Future studies will determine whether these potential theoretical advantages translate into clinical benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith AL, Fiel SB, Mayer-Hamblett N, Ramsey B, Burns JL (2003) Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibiotic administration: lack of association in cystic fibrosis. Chest 123:1495–1502

    Article  PubMed  CAS  Google Scholar 

  2. Foweraker JE, Laughton CR, Brown DF, Bilton D (2005) Phenotypic variability of Pseudomonas aeruginosa in sputa from patients with acute infective exacerbation of cystic fibrosis and its impact on the validity of antimicrobial susceptibility testing. J Antimicrob Chemother 55:921–927

    Article  PubMed  CAS  Google Scholar 

  3. Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD (2004) Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16s ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol 42:5176–5183

    Article  PubMed  CAS  Google Scholar 

  4. Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Kehagia V, Connett GJ, Bruce KD (2006) Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. J Clin Microbiol 44:2601–2604

    Article  PubMed  CAS  Google Scholar 

  5. Rogers GB, Skelton S, Serisier DJ, van der Gast CJ, Bruce KD (2010) Determining cystic fibrosis-affected lung microbiology: comparison of spontaneous and serially induced sputum samples by use of terminal restriction fragment length polymorphism profiling. J Clin Microbiol 48:78–86

    Article  PubMed  CAS  Google Scholar 

  6. Sánchez P, Linares JF, Ruiz-Díez B, Campanario E, Navas A, Baquero F, Martínez JL (2002) Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J Antimicrob Chemother 50:657–664

    Article  PubMed  Google Scholar 

  7. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas JR, Randell S, Boucher RC, Döring G (2002) Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325

    PubMed  CAS  Google Scholar 

  8. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254

    Article  PubMed  CAS  Google Scholar 

  9. Moskowitz SM, Foster JM, Emerson JC, Gibson RL, Burns JL (2005) Use of Pseudomonas biofilm susceptibilities to assign simulated antibiotic regimens for cystic fibrosis airway infection. J Antimicrob Chemother 56:879–886

    Article  PubMed  CAS  Google Scholar 

  10. Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, Macleod C, Aaron SD, Harbour C (2005) Antibiotic susceptibilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 43:5085–5090

    Article  PubMed  CAS  Google Scholar 

  11. Zebouh M, Thomas C, Honderlick P, Lemee L, Segonds C, Wallet F, Husson MO (2008) Direct antimicrobial susceptibility testing method for analysis of sputum collected from patients with cystic fibrosis. J Cyst Fibros 7:238–243

    Article  PubMed  CAS  Google Scholar 

  12. Serisier DJ, Jones G, Tuck A, Connett G, Carroll MP (2003) Clinical application of direct sputum sensitivity testing in a severe infective exacerbation of cystic fibrosis. Pediatr Pulmonol 35:463–466

    Article  PubMed  Google Scholar 

  13. Balke B, Hogardt M, Schmoldt S, Hoy L, Weissbrodt H, Häussler S (2006) Evaluation of the E test for the assessment of synergy of antibiotic combinations against multiresistant Pseudomonas aeruginosa isolates from cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 25:25–30

    Article  PubMed  CAS  Google Scholar 

  14. Manno G, Ugolotti E, Belli ML, Fenu ML, Romano L, Cruciani M (2003) Use of the E test to assess synergy of antibiotic combinations against isolates of Burkholderia cepacia-complex from patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 22:28–34

    PubMed  CAS  Google Scholar 

  15. Public Health Laboratory Services (PHLS) Board (2001) PHLS standard operating procedure for the investigation of sputum. Issue 4, pp 1–19

  16. Aaron SD, Vandemheen KL, Ferris W, Fergusson D, Tullis E, Haase D, Berthiaume Y, Brown N, Wilcox P, Yozghatlian V, Bye P, Bell S, Chan F, Rose B, Jeanneret A, Stephenson A, Noseworthy M, Freitag A, Paterson N, Doucette S, Harbour C, Ruel M, MacDonald N (2005) Combination antibiotic susceptibility testing to treat exacerbations of cystic fibrosis associated with multiresistant bacteria: a randomised, double-blind, controlled clinical trial. Lancet 366:463–471

    Article  PubMed  CAS  Google Scholar 

  17. Saiman L (2007) Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: ‘the motion for’. Paediatr Respir Rev 8:249–255

    Article  PubMed  Google Scholar 

  18. Middleton PG (2007) Editorial overview: clinical utility of synergy testing for multidrug resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis. Paediatr Respir Rev 8:262–264

    Article  PubMed  Google Scholar 

  19. Moskowitz SM, Emerson JC, McNamara S, Shell RD, Orenstein DM, Rosenbluth D, Katz MF, Ahrens R, Hornick D, Joseph PM, Gibson RL, Aitken ML, Benton WW, Burns JL (2011) Randomized trial of biofilm testing to select antibiotics for cystic fibrosis airway infection. Pediatr Pulmonol 46:184–192

    Article  PubMed  Google Scholar 

  20. Burns JL, Saiman L, Whittier S, Larone D, Krzewinski J, Liu Z, Marshall SA, Jones RN (2000) Comparison of agar diffusion methodologies for antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates from cystic fibrosis patients. J Clin Microbiol 38:1818–1822

    PubMed  CAS  Google Scholar 

  21. Milne KEN, Gould IM (2010) Combination testing of multidrug-resistant cystic fibrosis isolates of Pseudomonas aeruginosa: use of a new parameter, the susceptible breakpoint index. J Antimicrob Chemother 65:82–90

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None of the authors have any conflict of interest to declare in relation to this manuscript: D.J.S. has no conflict of interest to declare, M.P.C. has no conflict of interest to declare, D.M. has no conflict of interest to declare, A.T. has no conflict of interest to declare and G.J. has no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Serisier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serisier, D.J., Tuck, A., Matley, D. et al. Antimicrobial susceptibility and synergy studies of cystic fibrosis sputum by direct sputum sensitivity testing. Eur J Clin Microbiol Infect Dis 31, 3211–3216 (2012). https://doi.org/10.1007/s10096-012-1687-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-012-1687-6

Keywords

Navigation