Skip to main content

Advertisement

Log in

Extensively drug-resistant Pseudomonas aeruginosa: risk of bloodstream infection in hospitalized patients

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Several studies have suggested that resistance determinants usually reduce virulence. However, their contribution to decrease bloodstream infections is unclear. Our aim was to identify risk factors of extensively drug-resistant (XDR) Pseudomonas aeruginosa (PA) bacteremia and to assess the prevalence of XDR-PA bacteremia. A retrospective study of PA bloodstream infections in our patient population with at least one clinical sample isolate due to PA (2006–2007) was carried out. A total of 2,131 patients with PA clinical samples were detected. Among 1,657 patients with susceptible-PA isolates, 95 developed PA-susceptible bacteremia. Concomitantly, among 474 patients with multidrug-resistant (MDR)-PA isolates, 265 with XDR-PA, and 209 with non-XDR MDR-PA, 43 developed XDR-PA bacteremia and 13 non-XDR MDR-PA bacteremia, respectively. Pulsed-field gel electrophoresis (PFGE) revealed the clonal nature of the two predominant XDR-PA phenotypes and genetic heterogeneity in non-XDR MDR-PA phenotypes. The proportion of XDR-PA bacteremia was higher than the proportion of bacteremia in the susceptible-PA population (16 % vs. 6 %; p < 0.001). A logistic regression model identified prior exposure to fluoroquinolones [odds ratio (OR) 2.80; 95 % confidence interval (CI) 1.02 to 7.70] as the independent variable associated with XDR-PA bacteremia. Our study suggests that XDR-PA strains have a greater ability to develop bacteremia. It remains unclear as to whether this invasive capacity depends on clonal traits or on other virulence determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. doi:10.1111/j.1469-0691.2011.03570.x

    Article  PubMed  CAS  Google Scholar 

  2. Troillet N, Samore MH, Carmeli Y (1997) Imipenem-resistant Pseudomonas aeruginosa: risk factors and antibiotic susceptibility patterns. Clin Infect Dis 25:1094–1098

    Article  PubMed  CAS  Google Scholar 

  3. Harris A, Torres-Viera C, Venkataraman L, DeGirolami P, Samore M, Carmeli Y (1999) Epidemiology and clinical outcomes of patients with multiresistant Pseudomonas aeruginosa. Clin Infect Dis 28:1128–1133

    Article  PubMed  CAS  Google Scholar 

  4. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH (1999) Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrob Agents Chemother 43:1379–1382

    PubMed  CAS  Google Scholar 

  5. El Amari EB, Chamot E, Auckenthaler R, Pechère JC, van Delden C (2001) Influence of previous exposure to antibiotic therapy on the susceptibility pattern of Pseudomonas aeruginosa bacteremic isolates. Clin Infect Dis 33:1859–1864

    Article  PubMed  CAS  Google Scholar 

  6. Harris AD, Smith D, Johnson JA, Bradham DD, Roghmann MC (2002) Risk factors for imipenem-resistant Pseudomonas aeruginosa among hospitalized patients. Clin Infect Dis 34:340–345

    Article  PubMed  Google Scholar 

  7. Cao B, Wang H, Sun H, Zhu Y, Chen M (2004) Risk factors and clinical outcomes of nosocomial multi-drug resistant Pseudomonas aeruginosa. J Hosp Infect 57:112–118

    Article  PubMed  CAS  Google Scholar 

  8. Defez C, Fabbro-Peray P, Bouziges N, Gouby A, Mahamat A, Daurès JP et al (2004) Risk factors for multidrug-resistant Pseudomonas aeruginosa nosocomial infection. J Hosp Infect 57:209–216

    Article  PubMed  CAS  Google Scholar 

  9. Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y (2006) Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 50:43–48

    Article  PubMed  CAS  Google Scholar 

  10. Philippe E, Weiss M, Shultz JM, Yeomans F, Ehrenkranz NJ (1999) Emergence of highly antibiotic-resistant Pseudomonas aeruginosa in relation to duration of empirical antipseudomonal antibiotic treatment. Clin Perform Qual Health Care 7:83–87

    PubMed  CAS  Google Scholar 

  11. Paramythiotou E, Lucet JC, Timsit JF, Vanjak D, Paugam-Burtz C, Trouillet JL et al (2004) Acquisition of multidrug-resistant Pseudomonas aeruginosa in patients in intensive care units: role of antibiotics with antipseudomonal activity. Clin Infect Dis 38:670–677

    Article  PubMed  Google Scholar 

  12. Carmeli Y, Troillet N, Karchmer AW, Samore MH (1999) Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. Arch Intern Med 159:1127–1132

    Article  PubMed  CAS  Google Scholar 

  13. Giamarellos-Bourboulis EJ, Plachouras D, Tzivra A, Kousoulas V, Bolanos N, Raftogiannis M et al (2004) Stimulation of innate immunity by susceptible and multidrug-resistant Pseudomonas aeruginosa: an in vitro and in vivo study. Clin Exp Immunol 138:240–246

    Article  Google Scholar 

  14. Abdelraouf K, Kabbara S, Ledesma KR, Poole K, Tam VH (2011) Effect of multidrug resistance-conferring mutations on the fitness and virulence of Pseudomonas aeruginosa. J Antimicrob Chemother 66:1311–1317

    Article  PubMed  CAS  Google Scholar 

  15. Hocquet D, Berthelot Ph, Roussel-Delvallez M, Favre R, Jeannot K, Bajolet O et al (2007) Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob Agents Chemother 51:3531–3536

    Article  PubMed  CAS  Google Scholar 

  16. Paterson DL, Doi Y (2007) A step closer to extreme drug resistance (XDR) in gram-negative bacilli. Clin Infect Dis 45:1179–1181

    Article  PubMed  Google Scholar 

  17. Falagas ME, Karageorgopoulos DE (2008) Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clin Infect Dis 46:1121–1122

    Article  PubMed  Google Scholar 

  18. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383

    Article  PubMed  CAS  Google Scholar 

  19. Clinical and Laboratory Standards Institute (CLSI) (2009) Performance standards for antimicrobial susceptibility testing; Nineteenth informational supplement. CLSI document M100-S19. CLSI, Wayne, PA; vol. 29, no. 3

  20. European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2008) Breakpoint tables for interpretation of MICs and zone diameters (updated 27 April 2010; last accessed 29 October 2010). Available online at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/EUCAST_breakpoints_v1.1

  21. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    PubMed  CAS  Google Scholar 

  22. Peña C, Suarez C, Tubau F, Juan C, Moya B, Dominguez MA et al (2009) Nosocomial outbreak of a non-cefepime-susceptible ceftazidime-susceptible Pseudomonas aeruginosa strain overexpressing MexXY-OprM and producing an integron-borne PSE-1 β-lactamase. J Clin Microbiol 47:2381–2387

    Article  PubMed  Google Scholar 

  23. Suarez C, Peña C, Arch O, Dominguez MA, Tubau F, Juan C et al (2011) A large sustained endemic outbreak of multiresistant Pseudomonas aeruginosa: a new epidemiological scenario for nosocomial acquisition. BMC Infect Dis 11:272–279

    Article  PubMed  Google Scholar 

  24. Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP et al (2002) Health care-associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 137:791–797

    PubMed  Google Scholar 

  25. Tumbarello M, Repetto E, Trecarichi EM, Bernardini C, de Pascale G, Parisini A et al (2011) Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect 139:1740–1749

    Article  PubMed  CAS  Google Scholar 

  26. Poole K (2000) Efflux-mediated resistance to fluoroquinolones in Gram-negative bacteria. Antimicrob Agents Chemother 44:2233–2241

    Article  PubMed  CAS  Google Scholar 

  27. López-Dupla M, Martínez JA, Vidal F, Almela M, Soriano A, Marco F et al (2009) Previous ciprofloxacin exposure is associated with resistance to β-lactam antibiotics in subsequent Pseudomonas aeruginosa bacteremic isolates. Am J Infect Control 37:753–758

    Article  PubMed  Google Scholar 

  28. Murphy TF (2009) Pseudomonas aeruginosa in adults with chronic obstructive pulmonary disease. Curr Opin Pulm Med 15:138–142

    Article  PubMed  Google Scholar 

  29. Maciá MD, Blanquer D, Togores B, Sauleda J, Pérez JL, Oliver A (2005) Hypermutation is a key factor in development of multiple-antimicrobial resistance in Pseudomonas aeruginosa strains causing chronic lung infections. Antimicrob Agents Chemother 49:3382–3386

    Article  PubMed  Google Scholar 

  30. Donskey CJ, Chowdhry TK, Hecker MT, Hoyen CK, Hanrahan JA, Hujer AM et al (2000) Effect of antibiotic therapy on the density of vancomycin-resistant Enterococci in the stool of colonized patients. N Engl J Med 343:1925–1932

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Health Service grant FIS 08/0276 from the Fondo de Investigación Sanitarias and supported by Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, co-financed by the European Regional Development Fund (ERDF) “A way to achieve Europe”, Spanish Network for the Research in Infectious Diseases (REIPI RD06/0008), and by the Ciber de Enfermedades Respiratorias (CB06/06/0037).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, C., Gómez-Zorrilla, S., Suarez, C. et al. Extensively drug-resistant Pseudomonas aeruginosa: risk of bloodstream infection in hospitalized patients. Eur J Clin Microbiol Infect Dis 31, 2791–2797 (2012). https://doi.org/10.1007/s10096-012-1629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-012-1629-3

Keywords

Navigation