Skip to main content
Log in

Characterization of carbapenem-nonsusceptible Klebsiella pneumoniae bloodstream isolates at a Taiwanese hospital: clinical impacts of lowered breakpoints for carbapenems

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

This study was conducted in order to characterize carbapenem-nonsusceptible Klebsiella pneumoniae isolates and to evaluate the impacts of recently lowered interpretative breakpoints for carbapenems for Enterobacteriaceae. Among 152 K. pneumoniae bloodstream isolates suspected as AmpC or extended-spectrum β-lactamase (ESBL) producers, 58 (38.2%) isolates were currently interpreted as nonsusceptible to ertapenem, imipenem, or meropenem, and 42 (72.4%) of them were categorized as carbapenem-susceptible by the previous criteria. The high revision rate was associated with the predominance (79.3%) of DHA-1 among the carbapenem-nonsusceptible isolates due to both polyclonal and clonal spread. ESBLs were common (~57%) in both ertapenem-susceptible and -nonsusceptible isolates; however, 84.8% of the carbapenem-nonsusceptible isolates were also AmpC producers. The IMP-8 metallo-β-lactamase was detected in three isolates. Polyacrylamide gel electrophoresis suggested decreased OmpK35 expression in all but one ertapenem-nonsusceptible isolate, and genetic disruptions of ompK35 and ompK36 were detected in 30 and six ertapenem-nonsusceptible isolates, respectively. A comparison between patients infected by AmpC- or ESBL-producing ertapenem-susceptible (n = 62) isolates and those with isolates revised as ertapenem-nonsusceptible (n = 41) revealed more cases of malignancies (36.6% versus 14.5%; p = 0.01) and higher Charlson score (p = 0.033) among the patients with ertapenem-nonsusceptible isolates; however, the acquisition of an isolate revised as carbapenem-nonsusceptible was not identified as an independent mortality risk factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pitout JD (2010) Infections with extended-spectrum β-lactamase-producing Enterobacteriaceae: changing epidemiology and drug treatment choices. Drugs 70:313–333

    Article  PubMed  CAS  Google Scholar 

  2. Jean SS, Hsueh PR (2011) High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents 37:291–295

    Article  PubMed  CAS  Google Scholar 

  3. Bush K (2010) Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol 13:558–564

    Article  PubMed  CAS  Google Scholar 

  4. Gröbner S, Linke D, Schütz W, Fladerer C, Madlung J, Autenrieth IB, Witte W, Pfeifer Y (2009) Emergence of carbapenem-non-susceptible extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tübingen, Germany. J Med Microbiol 58:912–922

    Article  PubMed  Google Scholar 

  5. Kim SY, Park YJ, Yu JK, Kim HS, Park YS, Yoon JB, Yoo JY, Lee K (2007) Prevalence and mechanisms of decreased susceptibility to carbapenems in Klebsiella pneumoniae isolates. Diagn Microbiol Infect Dis 57:85–91

    Article  PubMed  CAS  Google Scholar 

  6. Doumith M, Ellington MJ, Livermore DM, Woodford N (2009) Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother 63:659–667

    Article  PubMed  CAS  Google Scholar 

  7. Wang XD, Cai JC, Zhou HW, Zhang R, Chen GX (2009) Reduced susceptibility to carbapenems in Klebsiella pneumoniae clinical isolates associated with plasmid-mediated β-lactamase production and OmpK36 porin deficiency. J Med Microbiol 58:1196–1202

    Article  PubMed  CAS  Google Scholar 

  8. Song W, Suh B, Choi JY, Jeong SH, Jeon EH, Lee YK, Hong SG, Lee K (2009) In vivo selection of carbapenem-resistant Klebsiella pneumoniae by OmpK36 loss during meropenem treatment. Diagn Microbiol Infect Dis 65:447–449

    Article  PubMed  CAS  Google Scholar 

  9. Cuzon G, Naas T, Guibert M, Nordmann P (2010) In vivo selection of imipenem-resistant Klebsiella pneumoniae producing extended-spectrum β-lactamase CTX-M-15 and plasmid-encoded DHA-1 cephalosporinase. Int J Antimicrob Agents 35:265–268

    Article  PubMed  CAS  Google Scholar 

  10. Lee K, Yong D, Choi YS, Yum JH, Kim JM, Woodford N, Livermore DM, Chong Y (2007) Reduced imipenem susceptibility in Klebsiella pneumoniae clinical isolates with plasmid-mediated CMY-2 and DHA-1 β-lactamases co-mediated by porin loss. Int J Antimicrob Agents 29:201–206

    Article  PubMed  CAS  Google Scholar 

  11. Clinical and Laboratory Standards Institute (CLSI) (2009) Performance standards for antimicrobial susceptibility testing. Nineteenth informational supplement. CLSI document M100-S19. CLSI, Wayne, PA

  12. Clinical and Laboratory Standards Institute (CLSI) (2011) Performance standards for antimicrobial susceptibility testing. Twenty-first informational supplement. CLSI document M100-S21. CLSI, Wayne, PA

  13. Pasteran F, Lucero C, Soloaga R, Rapoport M, Corso A (2011) Can we use imipenem and meropenem Vitek 2 MICs for detection of suspected KPC and other-carbapenemase producers among species of Enterobacteriaceae? J Clin Microbiol 49:697–701

    Article  PubMed  Google Scholar 

  14. Yan JJ, Hsueh PR, Lu JJ, Chang FY, Shyr JM, Wan JH, Liu YC, Chuang YC, Yang YC, Tsao SM, Wu HH, Wang LS, Lin TP, Wu HM, Chen HM, Wu JJ (2006) Extended-spectrum β-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother 50:1861–1864

    Article  PubMed  CAS  Google Scholar 

  15. Wu JJ, Wang LR, Liu YF, Chen HM, Yan JJ (2011) Prevalence and characteristics of ertapenem-resistant Klebsiella pneumoniae isolates in a Taiwanese university hospital. Microb Drug Resist 17:259–266

    Article  PubMed  CAS  Google Scholar 

  16. Yan JJ, Ko WC, Wu HM, Tsai SH, Chuang CL, Wu JJ (2004) Complexity of Klebsiella pneumoniae isolates resistant to both cephamycins and extended-spectrum cephalosporins at a teaching hospital in Taiwan. J Clin Microbiol 42:5337–5340

    Article  PubMed  CAS  Google Scholar 

  17. Song W, Jeong SH, Kim JS, Kim HS, Shin DH, Roh KH, Lee KM (2007) Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC β-lactamases and extended-spectrum β-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn Microbiol Infect Dis 57:315–318

    Article  PubMed  CAS  Google Scholar 

  18. Yan JJ, Wu JJ, Tsai SH, Chuang CL (2004) Comparison of the double-disk, combined disk, and Etest methods for detecting metallo-β-lactamases in gram-negative bacilli. Diagn Microbiol Infect Dis 49:5–11

    Article  PubMed  CAS  Google Scholar 

  19. Yigit H, Queenan AM, Anderson GJ, Doménech-Sánchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC (2001) Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161

    Article  PubMed  CAS  Google Scholar 

  20. Nüesch-Inderbinen MT, Hächler H, Kayser FH (1996) Detection of genes coding for extended-spectrum SHV beta-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis 15:398–402

    Article  PubMed  Google Scholar 

  21. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    PubMed  CAS  Google Scholar 

  22. Schellevis FG, van der Velden J, van de Lisdonk E, van Eijk JT, van Weel C (1993) Comorbidity of chronic diseases in general practice. J Clin Epidemiol 46:469–473

    Article  PubMed  CAS  Google Scholar 

  23. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40:373–383

    Article  PubMed  CAS  Google Scholar 

  24. Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM (1988) CDC definitions for nosocomial infections, 1988. Am J Infect Control 16:128–140

    Article  PubMed  CAS  Google Scholar 

  25. Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G, Klugman KP, Bonomo RA, Rice LB, Wagener MM, McCormack JG, Yu VL (2004) International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum β-lactamase production in nosocomial infections. Ann Intern Med 140:26–32

    PubMed  Google Scholar 

  26. Jacoby GA (2009) AmpC β-lactamases. Clin Microbiol Rev 22:161–182

    Article  PubMed  CAS  Google Scholar 

  27. Wexler HM (2004) In vitro activity of ertapenem: review of recent studies. J Antimicrob Chemother 53(Suppl 2):ii11–ii21

    Article  PubMed  CAS  Google Scholar 

  28. Yoo JS, Byeon J, Yang J, Yoo JI, Chung GT, Lee YS (2010) High prevalence of extended-spectrum β-lactamases and plasmid-mediated AmpC β-lactamases in Enterobacteriaceae isolated from long-term care facilities in Korea. Diagn Microbiol Infect Dis 67:261–265

    Article  PubMed  CAS  Google Scholar 

  29. Mammeri H, Guillon H, Eb F, Nordmann P (2010) Phenotypic and biochemical comparison of the carbapenem-hydrolyzing activities of five plasmid-borne AmpC β-lactamases. Antimicrob Agents Chemother 54:4556–4560

    Article  PubMed  CAS  Google Scholar 

  30. Doménech-Sánchez A, Martínez-Martínez L, Hernández-Allés S, del Carmen Conejo M, Pascual A, Tomás JM, Albertí S, Benedí VJ (2003) Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob Agents Chemother 47:3332–3335

    Article  PubMed  Google Scholar 

  31. Jacoby GA, Mills DM, Chow N (2004) Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in Klebsiella pneumoniae. Antimicrob Agents Chemother 48:3203–3206

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan, for providing the statistical consulting services. This work was partially supported by grants DOH100-TD-B-111-002 (Multidisciplinary Center of Excellence for Clinical Trial and Research, Department of Health, Executive Yuan, Taiwan) and NSC 99-3112-B-006-015 and 100-2320-B-006-015 (National Science Council, Taiwan).

Competing interests

None declared.

Ethical approval

The study protocol was reviewed and approved by the Institutional Review Board at National Cheng Kung University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, N.Y., Wu, J.J., Lin, S.H. et al. Characterization of carbapenem-nonsusceptible Klebsiella pneumoniae bloodstream isolates at a Taiwanese hospital: clinical impacts of lowered breakpoints for carbapenems. Eur J Clin Microbiol Infect Dis 31, 1941–1950 (2012). https://doi.org/10.1007/s10096-011-1525-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1525-2

Keywords

Navigation