Skip to main content

Advertisement

Log in

Cefotaxime for the detection of extended-spectrum β-lactamase or plasmid-mediated AmpC β-lactamase and clinical characteristics of cefotaxime-non-susceptible Escherichia coli and Klebsiella pneumoniae bacteraemia

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

We investigated the performance of cefotaxime for the detection of extended-spectrum β-lactamase (ESBL) or plasmid-mediated AmpC β-lactamase (pAmpC) and the clinical characteristics of cefotaxime-non-susceptible Escherichia coli or Klebsiella pneumoniae (CTXNS-EK) bacteraemia. All of the consecutive bloodstream isolates between 2005 and 2010 in a Japanese university hospital were characterised using polymerase chain reaction (PCR). Risk factors and outcomes of CTXNS-EK were analysed by multivariate logistic regression analysis. We identified 58 CTXNS-EK (15.6%) from 249 E. coli and 122 K. pneumoniae. Cefotaxime with a minimum inhibitory concentration (MIC) of >1 μg/mL had a sensitivity of 98.3% and a specificity of 99.7% for the detection of ESBL or pAmpC. CTXNS-EK had increased from 4.5% in 2005 to 23% in 2009. Risk factors for CTXNS-EK were previous isolation of multidrug-resistant bacteria, use of oxyimino-cephalosporins or fluoroquinolones, and high Sequential Organ Failure Assessment (SOFA) score. Patients with CTXNS-EK bacteraemia less frequently received appropriate empirical therapy than patients with cefotaxime-susceptible EK bacteraemia (81% vs. 97%, p < 0.001) and died within 30 days (21% vs. 5%, p = 0.001). Using the current breakpoints of the Clinical and Laboratory Standards Institute (CLSI) or the European Committee on Antimicrobial Susceptibility Testing (EUCAST), cefotaxime alone can identify ESBL or pAmpC producers. CTXNS-EK is an important and increasingly prevalent bacteraemia pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39(3):309–317

    Article  PubMed  Google Scholar 

  2. Biedenbach DJ, Moet GJ, Jones RN (2004) Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997–2002). Diagn Microbiol Infect Dis 50(1):59–69

    Article  PubMed  CAS  Google Scholar 

  3. Ramphal R, Ambrose PG (2006) Extended-spectrum beta-lactamases and clinical outcomes: current data. Clin Infect Dis 42(Suppl 4):S164–S172

    Article  PubMed  CAS  Google Scholar 

  4. Rossolini GM, D’Andrea MM, Mugnaioli C (2008) The spread of CTX-M-type extended-spectrum beta-lactamases. Clin Microbiol Infect 14(Suppl 1):33–41

    Article  PubMed  CAS  Google Scholar 

  5. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22(1):161–182

    Article  PubMed  CAS  Google Scholar 

  6. Pai H, Kang CI, Byeon JH, Lee KD, Park WB, Kim HB, Kim EC, Oh MD, Choe KW (2004) Epidemiology and clinical features of bloodstream infections caused by AmpC-type-beta-lactamase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 48(10):3720–3728

    Article  PubMed  CAS  Google Scholar 

  7. Park YS, Yoo S, Seo MR, Kim JY, Cho YK, Pai H (2009) Risk factors and clinical features of infections caused by plasmid-mediated AmpC beta-lactamase-producing Enterobacteriaceae. Int J Antimicrob Agents 34(1):38–43

    Article  PubMed  CAS  Google Scholar 

  8. Sidjabat HE, Paterson DL, Qureshi ZA, Adams-Haduch JM, O’Keefe A, Pascual A, Rodríguez-Baño J, Doi Y (2009) Clinical features and molecular epidemiology of CMY-type beta-lactamase-producing Escherichia coli. Clin Infect Dis 48(6):739–744

    Article  PubMed  Google Scholar 

  9. Falagas ME, Karageorgopoulos DE (2009) Extended-spectrum beta-lactamase-producing organisms. J Hosp Infect 73(4):345–354

    Article  PubMed  CAS  Google Scholar 

  10. Doi Y, Paterson DL (2007) Detection of plasmid-mediated class C beta-lactamases. Int J Infect Dis 11(3):191–197

    Article  PubMed  CAS  Google Scholar 

  11. Clinical Laboratory Standards Institute (CLSI) (2011) Performance standards for antimicrobial susceptibility testing; 21st informational supplement. CLSI document M100-S21. CLSI, Wayne, PA

  12. European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2011) Breakpoint tables for interpretation of MICs and zone diameters, version 1.3. Available online at: http://www.eucast.org/clinical_breakpoints/. Last date accessed 31 October 2011

  13. Pfaller MA, Segreti J (2006) Overview of the epidemiological profile and laboratory detection of extended-spectrum beta-lactamases. Clin Infect Dis 42(Suppl 4):S153–S163

    Article  PubMed  CAS  Google Scholar 

  14. Stürenburg E, Mack D (2003) Extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory, therapy, and infection control. J Infect 47(4):273–295

    Article  PubMed  Google Scholar 

  15. Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, Lamm W, Clark C, MacFarquhar J, Walton AL, Reller LB, Sexton DJ (2002) Health care-associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 137(10):791–797

    PubMed  Google Scholar 

  16. Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, Goto M (2000) Convenient test for screening metallo-beta-lactamase-producing gram-negative bacteria by using thiol compounds. J Clin Microbiol 38(1):40–43

    PubMed  CAS  Google Scholar 

  17. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5):373–383

    Article  PubMed  CAS  Google Scholar 

  18. Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, Sprung CL, Colardyn F, Blecher S (1998) Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med 26(11):1793–1800

    Article  PubMed  CAS  Google Scholar 

  19. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G (2010) Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65(3):490–495

    Article  PubMed  CAS  Google Scholar 

  20. Xu L, Ensor V, Gossain S, Nye K, Hawkey P (2005) Rapid and simple detection of blaCTX-M genes by multiplex PCR assay. J Med Microbiol 54(Pt 12):1183–1187

    Article  PubMed  CAS  Google Scholar 

  21. Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40(6):2153–2162

    Article  PubMed  Google Scholar 

  22. Yagi T, Kurokawa H, Shibata N, Shibayama K, Arakawa Y (2000) A preliminary survey of extended-spectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol Lett 184(1):53–56

    PubMed  CAS  Google Scholar 

  23. Briñas L, Zarazaga M, Sáenz Y, Ruiz-Larrea F, Torres C (2002) Beta-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother 46(10):3156–3163

    Article  PubMed  Google Scholar 

  24. Wiedmann-al-Ahmad M, Tichy HV, Schön G (1994) Characterization of Acinetobacter type strains and isolates obtained from wastewater treatment plants by PCR fingerprinting. Appl Environ Microbiol 60(11):4066–4071

    PubMed  CAS  Google Scholar 

  25. Muratani T, Matsumoto T (2006) Urinary tract infection caused by fluoroquinolone- and cephem-resistant Enterobacteriaceae. Int J Antimicrob Agents 28(Suppl 1):S10–S13

    Article  PubMed  CAS  Google Scholar 

  26. Chong Y, Yakushiji H, Ito Y, Kamimura T (2011) Clinical and molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan. Eur J Clin Microbiol Infect Dis 30(1):83–87

    Article  PubMed  CAS  Google Scholar 

  27. Coque TM, Baquero F, Canton R (2008) Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill 13(47). pii: 19044

    Google Scholar 

  28. Chen YH, Hsueh PR, Badal RE, Hawser SP, Hoban DJ, Bouchillon SK, Ni Y, Paterson DL (2011) Antimicrobial susceptibility profiles of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in the Asia-Pacific region according to currently established susceptibility interpretive criteria. J Infect 62(4):280–291

    Article  PubMed  Google Scholar 

  29. Shibata N, Kurokawa H, Doi Y, Yagi T, Yamane K, Wachino J, Suzuki S, Kimura K, Ishikawa S, Kato H, Ozawa Y, Shibayama K, Kai K, Konda T, Arakawa Y (2006) PCR classification of CTX-M-type beta-lactamase genes identified in clinically isolated gram-negative bacilli in Japan. Antimicrob Agents Chemother 50(2):791–795

    Article  PubMed  CAS  Google Scholar 

  30. Yamasaki K, Komatsu M, Abe N, Fukuda S, Miyamoto Y, Higuchi T, Ono T, Nishio H, Sueyoshi N, Kida K, Satoh K, Toyokawa M, Nishi I, Sakamoto M, Akagi M, Nakai I, Kofuku T, Orita T, Wada Y, Jikimoto T, Kinoshita S, Miyamoto K, Hirai I, Yamamoto Y (2010) Laboratory surveillance for prospective plasmid-mediated AmpC beta-lactamases in the Kinki region of Japan. J Clin Microbiol 48(9):3267–3273

    Article  PubMed  CAS  Google Scholar 

  31. Courpon-Claudinon A, Lefort A, Panhard X, Clermont O, Dornic Q, Fantin B, Mentré F, Wolff M, Denamur E, Branger C; COLIBAFI Group (2011) Bacteraemia caused by third-generation cephalosporin-resistant Escherichia coli in France: prevalence, molecular epidemiology and clinical features. Clin Microbiol Infect 17(4):557–565

    Article  PubMed  CAS  Google Scholar 

  32. Lee CH, Su LH, Li CC, Chien CC, Tang YF, Liu JW (2010) Microbiologic and clinical implications of bacteremia due to extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae with or without plasmid-mediated AmpC beta-lactamase DHA-1. Antimicrob Agents Chemother 54(12):5395–5398

    Article  PubMed  CAS  Google Scholar 

  33. Yan JJ, Ko WC, Wu JJ, Tsai SH, Chuang CL (2004) Epidemiological investigation of bloodstream infections by extended spectrum cephalosporin-resistant Escherichia coli in a Taiwanese teaching hospital. J Clin Microbiol 42(7):3329–3332

    Article  PubMed  Google Scholar 

  34. Du B, Long Y, Liu H, Chen D, Liu D, Xu Y, Xie X (2002) Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome. Intensive Care Med 28(12):1718–1723

    Article  PubMed  Google Scholar 

  35. Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO (2001) Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 32(8):1162–1171

    Article  PubMed  CAS  Google Scholar 

  36. Rodríguez-Baño J, Picón E, Gijón P, Hernández JR, Ruíz M, Peña C, Almela M, Almirante B, Grill F, Colomina J, Giménez M, Oliver A, Horcajada JP, Navarro G, Coloma A, Pascual A; Spanish Network for Research in Infectious Diseases (REIPI) (2010) Community-onset bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: risk factors and prognosis. Clin Infect Dis 50(1):40–48

    Article  PubMed  Google Scholar 

  37. Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9(4):228–236

    Article  PubMed  CAS  Google Scholar 

  38. Rodríguez-Baño J, Navarro MD, Romero L, Muniain MA, de Cueto M, Ríos MJ, Hernández JR, Pascual A (2006) Bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis 43(11):1407–1414

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Asano for the assistance with the statistical analysis.

Funding

This work was supported by the Ministry of Health, Labour, and Welfare of Japan (H21-Shinkou-Ippan-008).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Matsumura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumura, Y., Yamamoto, M., Matsushima, A. et al. Cefotaxime for the detection of extended-spectrum β-lactamase or plasmid-mediated AmpC β-lactamase and clinical characteristics of cefotaxime-non-susceptible Escherichia coli and Klebsiella pneumoniae bacteraemia. Eur J Clin Microbiol Infect Dis 31, 1931–1939 (2012). https://doi.org/10.1007/s10096-011-1523-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1523-4

Keywords

Navigation