Skip to main content
Log in

PcrV antibody–antibiotic combination improves survival in Pseudomonas aeruginosa-infected mice

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The type III secretion system (TTSS) of Pseudomonas aeruginosa, associated with acute infection, facilitates the direct injection of cytotoxins into the host cell cytoplasm. Mab166, a murine monoclonal antibody against PcrV, a protein located at the tip of the injectisome, has demonstrated efficacy against P. aeruginosa infection, resulting in reduced lung injury and increased survival in murine models of infection. We hypothesised that the administration of Mab166 in combination with an antibiotic would further improve the survival of P. aeruginosa-infected mice. A murine model of P. aeruginosa acute infection, three clinically relevant antibiotics (ciprofloxacin, tobramycin and ceftazidime) and the Mab166 antibody were used for this study. Consistently, compared to other treatment groups (antibiotic or antibody administered in isolation), the combination of Mab166 and antibiotic significantly improved the survival of mice infected with three times the lethal dose (LD90) of the highly cytotoxic ExoU-secreting strain, PA103. This synergistic effect was primarily due to enhanced bactericidal effect and protection against lung injury, which prevented bacterial dissemination to other organs. Hence, the combination of Mab166 with antibiotic administration provides a new, more effective strategy against P. aeruginosa airway infection, especially when large numbers of highly virulent strains are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. El Solh AA, Akinnusi ME, Wiener-Kronish JP, Lynch SV, Pineda LA, Szarpa K (2008) Persistent infection with Pseudomonas aeruginosa in ventilator-associated pneumonia. Am J Respir Crit Care Med 178(5):513–519

    Article  PubMed  Google Scholar 

  2. Parker CM, Kutsogiannis J, Muscedere J, Cook D, Dodek P, Day AG, Heyland DK; Canadian Critical Care Trials Group (2008) Ventilator-associated pneumonia caused by multidrug-resistant organisms or Pseudomonas aeruginosa: prevalence, incidence, risk factors, and outcomes. J Crit Care 23(1):18–26

    Article  PubMed  Google Scholar 

  3. Gaynes R, Edwards JR; National Nosocomial Infections Surveillance System (2005) Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 41(6):848–854

    Article  PubMed  Google Scholar 

  4. Lynch SV, Wiener-Kronish JP (2008) Novel strategies to combat bacterial virulence. Curr Opin Crit Care 14(5):593–599

    Article  PubMed  Google Scholar 

  5. Mueller CA, Broz P, Cornelis GR (2008) The type III secretion system tip complex and translocon. Mol Microbiol 68(5):1085–1095

    Article  PubMed  CAS  Google Scholar 

  6. Roy-Burman A, Savel RH, Racine S, Swanson BL, Revadigar NS, Fujimoto J, Sawa T, Frank DW, Wiener-Kronish JP (2001) Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis 183(12):1767–1774

    Article  PubMed  CAS  Google Scholar 

  7. Sato H, Frank DW (2004) ExoU is a potent intracellular phospholipase. Mol Microbiol 53(5):1279–1290

    Article  PubMed  CAS  Google Scholar 

  8. Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW (1998) ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci U S A 95(23):13899–13904

    Article  PubMed  CAS  Google Scholar 

  9. Henriksson ML, Sundin C, Jansson AL, Forsberg A, Palmer RH, Hallberg B (2002) Exoenzyme S shows selective ADP-ribosylation and GTPase-activating protein (GAP) activities towards small GTPases in vivo. Biochem J 367(Pt 3):617–628

    Article  PubMed  CAS  Google Scholar 

  10. Sundin C, Henriksson ML, Hallberg B, Forsberg A, Frithz-Lindsten E (2001) Exoenzyme T of Pseudomonas aeruginosa elicits cytotoxicity without interfering with Ras signal transduction. Cell Microbiol 3(4):237–246

    Article  PubMed  CAS  Google Scholar 

  11. Frithz-Lindsten E, Du Y, Rosqvist R, Forsberg A (1997) Intracellular targeting of exoenzyme S of Pseudomonas aeruginosa via type III-dependent translocation induces phagocytosis resistance, cytotoxicity and disruption of actin microfilaments. Mol Microbiol 25(6):1125–1139

    Article  PubMed  CAS  Google Scholar 

  12. Olson JC, Fraylick JE, McGuffie EM, Dolan KM, Yahr TL, Frank DW, Vincent TS (1999) Interruption of multiple cellular processes in HT-29 epithelial cells by Pseudomonas aeruginosa exoenzyme S. Infect Immun 67(6):2847–2854

    PubMed  CAS  Google Scholar 

  13. Olson JC, McGuffie EM, Frank DW (1997) Effects of differential expression of the 49-kilodalton exoenzyme S by Pseudomonas aeruginosa on cultured eukaryotic cells. Infect Immun 65(1):248–256

    PubMed  CAS  Google Scholar 

  14. Broz P, Mueller CA, Müller SA, Philippsen A, Sorg I, Engel A, Cornelis GR (2007) Function and molecular architecture of the Yersinia injectisome tip complex. Mol Microbiol 65(5):1311–1320

    Article  PubMed  CAS  Google Scholar 

  15. Goure J, Pastor A, Faudry E, Chabert J, Dessen A, Attree I (2004) The V antigen of Pseudomonas aeruginosa is required for assembly of the functional PopB/PopD translocation pore in host cell membranes. Infect Immun 72(8):4741–4750

    Article  PubMed  CAS  Google Scholar 

  16. Frank DW, Vallis A, Wiener-Kronish JP, Roy-Burman A, Spack EG, Mullaney BP, Megdoud M, Marks JD, Fritz R, Sawa T (2002) Generation and characterization of a protective monoclonal antibody to Pseudomonas aeruginosa PcrV. J Infect Dis 186(1):64–73

    Article  PubMed  CAS  Google Scholar 

  17. Sawa T, Yahr TL, Ohara M, Kurahashi K, Gropper MA, Wiener-Kronish JP, Frank DW (1999) Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat Med 5(4):392–398

    Article  PubMed  CAS  Google Scholar 

  18. Faure K, Fujimoto J, Shimabukuro DW, Ajayi T, Shime N, Moriyama K, Spack EG, Wiener-Kronish JP, Sawa T (2003) Effects of monoclonal anti-PcrV antibody on Pseudomonas aeruginosa-induced acute lung injury in a rat model. J Immune Based Ther Vaccines 1(1):2

    Article  PubMed  Google Scholar 

  19. Neely AN, Holder IA, Wiener-Kronish JP, Sawa T (2005) Passive anti-PcrV treatment protects burned mice against Pseudomonas aeruginosa challenge. Burns 31(2):153–158

    Article  PubMed  Google Scholar 

  20. Nicas TI, Iglewski BH (1984) Isolation and characterization of transposon-induced mutants of Pseudomonas aeruginosa deficient in production of exoenzyme S. Infect Immun 45(2):470–474

    PubMed  CAS  Google Scholar 

  21. Shime N, Sawa T, Fujimoto J, Faure K, Allmond LR, Karaca T, Swanson BL, Spack EG, Wiener-Kronish JP (2001) Therapeutic administration of anti-PcrV F(ab′)(2) in sepsis associated with Pseudomonas aeruginosa. J Immunol 167(10):5880–5886

    PubMed  CAS  Google Scholar 

  22. Imamura Y, Yanagihara K, Fukuda Y, Kaneko Y, Seki M, Izumikawa K, Miyazaki Y, Hirakata Y, Sawa T, Wiener-Kronish JP, Kohno S (2007) Effect of anti-PcrV antibody in a murine chronic airway Pseudomonas aeruginosa infection model. Eur Respir J 29(5):965–968

    Article  PubMed  CAS  Google Scholar 

  23. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117(4):877–888. doi:10.1172/JCI30783

    Article  PubMed  CAS  Google Scholar 

  24. Aberg V, Almqvist F (2007) Pilicides–small molecules targeting bacterial virulence. Org Biomol Chem 5(12):1827–1834. doi:10.1039/b702397a

    Article  PubMed  Google Scholar 

  25. Pinkner JS, Remaut H, Buelens F, Miller E, Aberg V, Pemberton N, Hedenström M, Larsson A, Seed P, Waksman G, Hultgren SJ, Almqvist F (2006) Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc Natl Acad Sci U S A 103(47):17897–17902. doi:10.1073/pnas.0606795103

    Article  PubMed  CAS  Google Scholar 

  26. Baer M, Sawa T, Flynn P, Luehrsen K, Martinez D, Wiener-Kronish JP, Yarranton G, Bebbington C (2009) An engineered human antibody fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent antibacterial activity. Infect Immun 77(3):1083–1090. doi:10.1128/IAI.00815-08

    Article  PubMed  CAS  Google Scholar 

  27. Vidal F, Mensa J, Almela M, Martínez JA, Marco F, Casals C, Gatell JM, Soriano E, Jimenez de Anta MT (1996) Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch Intern Med 156(18):2121–2126

    Article  PubMed  CAS  Google Scholar 

  28. Wareham DW, Curtis MA (2007) A genotypic and phenotypic comparison of type III secretion profiles of Pseudomonas aeruginosa cystic fibrosis and bacteremia isolates. Int J Med Microbiol 297(4):227–234

    Article  PubMed  CAS  Google Scholar 

  29. Singh R, Ray P, Das A, Sharma M (2009) Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol 58(Pt 8):1067–1073. doi:10.1099/jmm.0.009720-0

    Article  PubMed  CAS  Google Scholar 

  30. Jayaraman R (2008) Bacterial persistence: some new insights into an old phenomenon. J Biosci 33(5):795–805

    Article  PubMed  CAS  Google Scholar 

  31. De Leenheer P, Cogan NG (2009) Failure of antibiotic treatment in microbial populations. J Math Biol 59(4):563–579. doi:10.1007/s00285-008-0243-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Yang for the advice on antibiotic dosing. This study was funded, in part, by KaloBios Pharmaceuticals, Inc., South San Francisco, CA, USA. Yuanlin Song is supported by the University of California, San Francisco Academic Senate Individual Grant (REAC) and by the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. Susan V. Lynch is supported by an American Lung Association award and National Institutes of Health (NIH) awards AI075410 and HL098964.

Conflict of interest

Authors M.B., G.Y. and C.B. are all employed by and hold stock in KaloBios Pharmaceuticals, Inc. Authors Y.S. and S.V.L. received research funding for this study from KaloBios Pharmaceuticals, Inc. Authors R.S. and J.L. declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Song or S. V. Lynch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Baer, M., Srinivasan, R. et al. PcrV antibody–antibiotic combination improves survival in Pseudomonas aeruginosa-infected mice. Eur J Clin Microbiol Infect Dis 31, 1837–1845 (2012). https://doi.org/10.1007/s10096-011-1509-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1509-2

Keywords

Navigation