Skip to main content

Advertisement

Log in

A multiplex, internally controlled real-time PCR assay for detection of toxigenic Clostridium difficile and identification of hypervirulent strain 027/ST-1

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The purpose of this study was to validate a multiplex real-time PCR assay capable of detecting toxigenic Clostridium difficile and simultaneously identifying C. difficile ribotype 027/ST-1 by targeting the toxin genes tcdA, tcdB and cdtA in one reaction and in a separate reaction identifying the Δ117 deletion in tcdC associated with ribotype 027/ST-1. PCR was done prospectively on 704 samples routinely submitted to our department and results were compared to results of toxigenic culture. Sequencing of tcdC, multi locus sequence typing (MLST) and PCR ribotyping were done on cultured isolates to confirm the correct identification of the Δ117 deletion in tcdC and C. difficile ribotype 027/ST-1, respectively. The PCR assay displayed a sensitivity, specificity, PPV and NPV of 99.0%, 97.4%, 87.4% and 99.8%, respectively, compared to toxigenic culture on 665 samples evaluable both by PCR and culture. Sequencing of tcdC, ribotyping and MLST of cultured isolates validated the genotyping assay and confirmed the ability of the assay to correctly identify C. difficile ribotype 027/ST-1 in our current epidemiological setting. We describe the use of a combination of two separate PCR assays for sensitive and specific detection of toxigenic C. difficile and presumptive identification of C. difficile 027/ST-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rupnik M (2008) Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes. FEMS Microbiol Rev 32:541–555

    Article  PubMed  CAS  Google Scholar 

  2. Matamouros S, England P, Dupuy B (2007) Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol Microbiol 64:1274–1288

    Article  PubMed  CAS  Google Scholar 

  3. Loo VG, Poirier L, Miller MA, Oughton M, Libman MD, Michaud S, Bourgault AM, Nguyen T, Frenette C, Kelly M, Vibien A, Brassard P, Fenn S, Dewar K, Hudson TJ, Horn R, Rene P, Monczak Y, Dascal A (2005) A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353:2442–2449

    Article  PubMed  CAS  Google Scholar 

  4. Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW, Fung R, Golubchik T, Harding RM, Jeffery KJ, Jolley KA, Kirton R, Peto TE, Rees G, Stoesser N, Vaughan A, Walker AS, Young BC, Wilcox M, Dingle KE (2010) Multilocus sequence typing of Clostridium difficile. J Clin Microbiol 48:770–778

    Article  PubMed  CAS  Google Scholar 

  5. Bacci S, St-Martin G, Olesen B, Bruun B, Olsen KE, Nielsen EM, Mølbak K (2009) Outbreak of Clostridium difficile 027 in North Zealand, Denmark, 2008–2009. Euro Surveill 14: pii:19183. Available online at: http://www.eurosurveillance.org/viewarticle.aspx?articleid=19183

  6. Dupuy B, Govind R, Antunes A, Matamouros S (2008) Clostridium difficile toxin synthesis is negatively regulated by TcdC. J Med Microbiol 57:685–689

    Article  PubMed  CAS  Google Scholar 

  7. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, Pepin J, Wilcox MH (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455

    Article  PubMed  Google Scholar 

  8. Alcala L, Sanchez-Cambronero L, Catalan MP, Sanchez-Somolinos M, Pelaez MT, Marin M, Bouza E (2008) Comparison of three commercial methods for rapid detection of Clostridium difficile toxins A and B from fecal specimens. J Clin Microbiol 46:3833–3835

    Article  PubMed  CAS  Google Scholar 

  9. de Boer RF, Wijma JJ, Schuurman T, Moedt J, Dijk-Alberts BG, Ott A, Kooistra-Smid AM, van Duynhoven YT (2010) Evaluation of a rapid molecular screening approach for the detection of toxigenic Clostridium difficile in general and subsequent identification of the tcdC Delta117 mutation in human stools. J Microbiol Methods 83:59–65

    Article  PubMed  Google Scholar 

  10. Niesters HG (2001) Quantitation of viral load using real-time amplification techniques. Methods 25:419–429

    Article  PubMed  CAS  Google Scholar 

  11. Spigaglia P, Mastrantonio P (2002) Molecular analysis of the pathogenicity locus and polymorphism in the putative negative regulator of toxin production (TcdC) among Clostridium difficile clinical isolates. J Clin Microbiol 40:3470–3475

    Article  PubMed  CAS  Google Scholar 

  12. Bidet P, Barbut F, Lalande V, Burghoffer B, Petit JC (1999) Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 175:261–266

    Article  PubMed  CAS  Google Scholar 

  13. Aichinger E, Schleck CD, Harmsen WS, Nyre LM, Patel R (2008) Nonutility of repeat laboratory testing for detection of Clostridium difficile by use of PCR or enzyme immunoassay. J Clin Microbiol 46:3795–3797

    Article  PubMed  CAS  Google Scholar 

  14. Goorhuis A, Bakker D, Corver J, Debast SB, Harmanus C, Notermans DW, Bergwerff AA, Dekker FW, Kuijper EJ (2008) Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–1170

    Article  PubMed  CAS  Google Scholar 

  15. Crobach MJ, Dekkers OM, Wilcox MH, Kuijper EJ (2009) European Society of Clinical Microbiology and Infectious Diseases (ESCMID): data review and recommendations for diagnosing Clostridium difficile-infection (CDI). Clin Microbiol Infect 15:1053–1066

    Article  PubMed  CAS  Google Scholar 

  16. Novak-Weekley SM, Marlowe EM, Miller JM, Cumpio J, Nomura JH, Vance PH, Weissfeld A (2010) Clostridium difficile testing in the clinical laboratory by use of multiple testing algorithms. J Clin Microbiol 48:889–893

    Article  PubMed  Google Scholar 

  17. Stamper PD, Alcabasa R, Aird D, Babiker W, Wehrlin J, Ikpeama I, Carroll KC (2009) Comparison of a commercial real-time PCR assay for tcdB detection to a cell culture cytotoxicity assay and toxigenic culture for direct detection of toxin-producing Clostridium difficile in clinical samples. J Clin Microbiol 47:373–378

    Article  PubMed  CAS  Google Scholar 

  18. Stamper PD, Babiker W, Alcabasa R, Aird D, Wehrlin J, Ikpeama I, Gluck L, Carroll KC (2009) Evaluation of a new commercial TaqMan PCR assay for direct detection of the clostridium difficile toxin B gene in clinical stool specimens. J Clin Microbiol 47:3846–3850

    Article  PubMed  CAS  Google Scholar 

  19. Babady NE, Stiles J, Ruggiero P, Khosa P, Huang D, Shuptar S, Kamboj M, Kiehn TE (2010) Evaluation of the Cepheid Xpert Clostridium difficile Epi assay for diagnosis of Clostridium difficile infection and typing of the NAP1 strain at a cancer hospital. J Clin Microbiol 48:4519–4524

    Article  PubMed  Google Scholar 

  20. Knetsch CW, Bakker D, de Boer RF, Sanders I, Hofs S, Kooistra-Smid AM, Corver J, Eastwood K, Wilcox MH, Kuijper EJ (2011) Comparison of real-time PCR techniques to cytotoxigenic culture methods for diagnosing Clostridium difficile infection. J Clin Microbiol 49:227–231

    Article  PubMed  CAS  Google Scholar 

  21. Dingle KE, Griffiths D, Didelot X, Evans J, Vaughan A, Kachrimanidou M, Stoesser N, Jolley KA, Golubchik T, Harding RM, Peto TE, Fawley W, Wilcox M, Crook DW (2011) Clinical Clostridium difficile: Clonality and pathogenicity locus diversity. Plos One 6:e19993

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Foundation Idella (Grant 3.3.5-2010/II to AFM and KS). This publication made use of the Clostridium difficile Multi Locus Sequence Typing website (http://pubmlst.org/cdifficile/) developed by Keith Jolley (Jolley & Maiden 2010, BMC Bioinformatics, 11:595) and sited at the University of Oxford. The development of this site was funded by the Wellcome Trust. The authors would like to thank the laboratory technicians who carried out the laboratory analyses for their work and commitment to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Schønning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoegh, A.M., Nielsen, J.B., Lester, A. et al. A multiplex, internally controlled real-time PCR assay for detection of toxigenic Clostridium difficile and identification of hypervirulent strain 027/ST-1. Eur J Clin Microbiol Infect Dis 31, 1073–1079 (2012). https://doi.org/10.1007/s10096-011-1409-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1409-5

Keywords

Navigation