Skip to main content
Log in

Specific magnetic isolation for direct detection of HPV16

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Finding a suitable DNA purification system is vital for the success of many PCR based diagnostic tests. This report demonstrates the value of magnetic beads in combination with real-time PCR for the sequence-specific isolation and detection of episomal HPV16 DNA. In order to maximize the isolation, two purification procedures were evaluated. Compared to the indirect method, in which the target was magnetically labeled after being hybridized to the capture probes, much higher efficiencies were obtained by directly capturing the target using DNA functionalized beads. These higher efficiencies were obtained by carefully tuning the capture probe density on the beads. When modifying the beads with dual-biotinylated capture probes or introducing beads modified with different capture probes, the amount of HPV16 isolated from spiked clinical swab samples even increased further. This not only resulted in the use of dual-biotinylated capture probes in higher purification efficiencies, but also the thermostability of the DNA-bead linkage was found to improve. In summary, this study shows that DNA functionalized magnetic beads are very promising diagnostic tools as they allow for a specific, simple, and fast isolation and concentration of minute quantities of DNA from complex clinical samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S (2007) Human papillomavirus and cervical cancer. Lancet 370:890–907

    Article  PubMed  CAS  Google Scholar 

  2. Bosch FX, de Sanjosé S (2002) Human papillomavirus in cervical cancer. Curr Oncol Rep 4:175–183

    Article  PubMed  Google Scholar 

  3. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, Snijders PJ, Meijer CJ (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527

    Article  PubMed  Google Scholar 

  4. Peyton CL, Schiffman M, Lorincz AT, Hunt WC, Mielzynska I, Bratti C, Eaton S, Hildesheim A, Morera LA, Rodriguez AC, Herrero R, Sherman ME, Wheeler CM (1998) Comparison of PCR- and hybrid capture-based human papillomavirus detection systems using multiple cervical specimen collection strategies. J Clin Microbiol 36:3248–3254

    PubMed  CAS  Google Scholar 

  5. Sandri MT, Lentati P, Benini E, Dell'Orto P, Zorzino L, Carozzi FM, Maisonneuve P, Passerini R, Salvatici M, Casadio C, Boveri S, Sideri M (2006) Comparison of the Digene HC2 assay and the Roche AMPLICOR human papillomavirus (HPV) test for detection of high-risk HPV genotypes in cervical samples. J Clin Microbiol 44:2141–2146

    Article  PubMed  Google Scholar 

  6. Stevens MP, Garland SM, Rudland E, Tan J, Quinn MA, Tabrizi SN (2007) Comparison of the digene hybrid capture 2 assay and Roche AMPLICOR and LINEAR ARRAY human papillomavirus (HPV) tests in detecting high-risk HPV genotypes in specimens from women with previous abnormal Pap smear results. J Clin Microbiol 45:2130–2137

    Article  PubMed  Google Scholar 

  7. Li J, Lee JY, Yeung ES (2006) Quantitative screening of single copies of human papilloma viral DNA without amplification. Anal Chem 78:6490–6496

    Article  PubMed  CAS  Google Scholar 

  8. Roberts I, Ng G, Foster N, Stanley M, Herdman MT, Pett MR, Teschendorff A, Coleman N (2008) Critical evaluation of HPV16 gene copy number quantification by SYBR green PCR. BMC Biotechnol 8:57

    Article  PubMed  Google Scholar 

  9. Burd EM (2003) Human papillomavirus and cervical cancer. Clin Microbiol Rev 16:1–17

    Article  PubMed  CAS  Google Scholar 

  10. Josefsson AM, Magnusson PK, Ylitalo N, Sorensen P, Qwarforth-Tubbin P, Andersen PK, Melbye M, Adami HO, Gyllensten UB (2000) Viral load of human papilloma virus 16 as a determinant for development of cervical carcinoma in situ: a nested case-control study. Lancet 355:2189–2193

    Article  PubMed  CAS  Google Scholar 

  11. van Duin M, Snijders PJ, Schrijnemakers HF, Voorhorst FJ, Rozendaal L, Nobbenhuis MA, van den Brule AJ, Verheijen RH, Helmerhorst TJ, Meijer CJ (2002) Human papillomavirus 16 load in normal and abnormal cervical scrapes: an indicator of CIN II/III and viral clearance. Int J Cancer 98:590–595

    Article  PubMed  Google Scholar 

  12. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  PubMed  CAS  Google Scholar 

  13. Berensmeier S (2006) Magnetic particles for the separation and purification of nucleic acids. Appl Microbiol Biotechnol 73:495–504

    Article  PubMed  CAS  Google Scholar 

  14. Safarik I, Safarikova M (2004) Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol 2:7

    Article  PubMed  Google Scholar 

  15. Archer MJ, Lin B, Wang Z, Stenger DA (2006) Magnetic bead-based solid phase for selective extraction of genomic DNA. Anal Biochem 355:285–297

    Article  PubMed  CAS  Google Scholar 

  16. Parham NJ, Picard FJ, Peytavi R, Gagnon M, Seyrig G, Gagne PA, Boissinot M, Bergeron MG (2007) Specific magnetic bead based capture of genomic DNA from clinical samples: application to the detection of group B streptococci in vaginal/anal swabs. Clin Chem 53:1570–1576

    Article  PubMed  CAS  Google Scholar 

  17. Zhao X, Tapec-Dytioco R, Wang K, Tan W (2003) Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. Anal Chem 75:3144–3151

    Google Scholar 

  18. Choi JW, Oh KW, Thomas JH, Heineman WR, Halsall HB, Nevin JH, Helmicki AJ, Henderson HT, Ahn CH (2002) An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip 2:27–30

    Article  PubMed  CAS  Google Scholar 

  19. Yeung SW, Hsing IM (2006) Manipulation and extraction of genomic DNA from cell lysate by functionalized magnetic particles for lab on a chip applications. Biosens Bioelectron 21:989–997

    Article  PubMed  CAS  Google Scholar 

  20. Coutlee F, Gravitt P, Kornegay J, Hankins C, Richardson H, Lapointe N, Voyer H, Franco E (2002) Use of PGMY primers in L1 consensus PCR improves detection of human papillomavirus DNA in genital samples. J Clin Microbiol 40:902–907

    Article  PubMed  CAS  Google Scholar 

  21. Harnish DG, Belland LM, Scheid EE, Rohan TE (1999) Evaluation of human papillomavirus-consensus primers for HPV detection by the polymerase chain reaction. Mol Cell Probes 13:9–21

    Article  PubMed  CAS  Google Scholar 

  22. Karlsen F, Kalantari M, Jenkins A, Pettersen E, Kristensen G, Holm R, Johansson B, Hagmar B (1996) Use of multiple PCR primer sets for optimal detection of human papillomavirus. J Clin Microbiol 34:2095–2100

    PubMed  CAS  Google Scholar 

  23. Nazarenko I, Kobayashi L, Giles J, Fishman C, Chen G, Lorincz A (2008) A novel method of HPV genotyping using hybrid capture sample preparation method combined with GP5+/6+ PCR and multiplex detection on Luminex XMAP. J Virol Methods 154:76–81

    Article  PubMed  CAS  Google Scholar 

  24. Peeters S, Stakenborg T, Colle F, Liu C, Lagae L, Van RM (2010) Real-time PCR to study the sequence specific magnetic purification of DNA. Biotechnol Prog 26:1678–1684

    Article  PubMed  CAS  Google Scholar 

  25. Rector A, Tachezy R, Van RM (2004) A sequence-independent strategy for detection and cloning of circular DNA virus genomes by using multiply primed rolling-circle amplification. J Virol 78:4993–4998

    Article  PubMed  CAS  Google Scholar 

  26. Stanley MA, Browne HM, Appleby M, Minson AC (1989) Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer 43:672–676

    Article  PubMed  CAS  Google Scholar 

  27. Barken KB, Gabig-Ciminska M, Holmgren A, Molin S (2004) Effect of unlabeled helper probes on detection of an RNA target by bead-based sandwich hybridization. Biotechniques 36:124–132

    PubMed  CAS  Google Scholar 

  28. Fuchs BM, Glockner FO, Wulf J, Amann R (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 66:3603–3607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all members of the FNS research group for their valuable scientific input. Sara Peeters is grateful to the Institute for the Promotion and Innovation through Science and Technology (IWT-Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Peeters.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peeters, S., Stakenborg, T., Colle, F. et al. Specific magnetic isolation for direct detection of HPV16. Eur J Clin Microbiol Infect Dis 31, 539–546 (2012). https://doi.org/10.1007/s10096-011-1345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1345-4

Keywords

Navigation