Self-collected vaginal swabs for the quantitative real-time polymerase chain reaction assay of Atopobium vaginae and Gardnerella vaginalis and the diagnosis of bacterial vaginosis

  • J.-P. Menard
  • F. Fenollar
  • D. Raoult
  • L. Boubli
  • F. Bretelle
Article

Abstract

The aim of this study was to assess the feasibility of using self-collected vaginal specimens for the quantitative real-time polymerase chain reaction (qPCR) assays of bacterial vaginosis (BV)-associated bacteria versus practitioner-collected swabs. A cross-sectional study included 190 pregnant women enrolled before 20 weeks’ gestation from September 2008 to November 2009. Self- and practitioner-collected swabs were taken during the same prenatal visit for each woman, qPCR assays performed for each, and the results compared. The quantification of the human albumin gene was used as an internal control to ensure sampling quality and accurate comparisons. The level of agreement of the qPCR assays for each microorganism was calculated with the Spearman product moment correlation coefficient and the kappa statistic. In all, 370 vaginal samples (185 self- and 185 practitioner-collected swabs) had a narrow range of values for the number of albumin gene copies and a significant correlation coefficient (Spearman’s rho = 0.532; p < 0.001). The agreement between both sampling methods was excellent (Spearman’s rho was 0.748 for Atopobium vaginae, 0.918 for Lactobacillus species, 0.940 for Gardnerella vaginalis; p < 0.001), especially for high concentrations of A. vaginae (≥108 copies/mL; kappa value = 0.973; p < 0.001) and G. vaginalis (≥109 copies/mL; kappa value = 0.903; p < 0.001). This study demonstrates the validity and reliability of self- versus practitioner-collected swabs for the molecular quantification of Lactobacillus species, G. vaginalis, and A. vaginae.

References

  1. 1.
    Chernesky MA, Hook EW 3rd, Martin DH, Lane J, Johnson R, Jordan JA, Fuller D, Willis DE, Fine PM, Janda WM, Schachter J (2005) Women find it easy and prefer to collect their own vaginal swabs to diagnose Chlamydia trachomatis or Neisseria gonorrhoeae infections. Sex Transm Dis 32:729–733PubMedCrossRefGoogle Scholar
  2. 2.
    Nelson DB, Bellamy S, Gray TS, Nachamkin I (2003) Self-collected versus provider-collected vaginal swabs for the diagnosis of bacterial vaginosis: an assessment of validity and reliability. J Clin Epidemiol 56:862–866PubMedCrossRefGoogle Scholar
  3. 3.
    Strauss RA, Eucker B, Savitz DA, Thorp JM Jr (2005) Diagnosis of bacterial vaginosis from self-obtained vaginal swabs. Infect Dis Obstet Gynecol 13:31–35PubMedCrossRefGoogle Scholar
  4. 4.
    Nugent RP, Krohn MA, Hillier SL (1991) Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol 29:297–301PubMedGoogle Scholar
  5. 5.
    Allsworth JE, Peipert JF (2007) Prevalence of bacterial vaginosis: 2001–2004 National Health and Nutrition Examination Survey data. Obstet Gynecol 109:114–120PubMedCrossRefGoogle Scholar
  6. 6.
    Klebanoff MA, Schwebke JR, Zhang J, Nansel TR, Yu KF, Andrews WW (2004) Vulvovaginal symptoms in women with bacterial vaginosis. Obstet Gynecol 104:267–272PubMedCrossRefGoogle Scholar
  7. 7.
    Larsson PG, Bergström M, Forsum U, Jacobsson B, Strand A, Wölner-Hanssen P (2005) Bacterial vaginosis. Transmission, role in genital tract infection and pregnancy outcome: an enigma. APMIS 113:233–245PubMedCrossRefGoogle Scholar
  8. 8.
    Fredricks DN, Fiedler TL, Marrazzo JM (2005) Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353:1899–1911PubMedCrossRefGoogle Scholar
  9. 9.
    Fredricks DN, Fiedler TL, Thomas KK, Oakley BB, Marrazzo JM (2007) Targeted PCR for detection of vaginal bacteria associated with bacterial vaginosis. J Clin Microbiol 45:3270–3276PubMedCrossRefGoogle Scholar
  10. 10.
    De Backer E, Verhelst R, Verstraelen H, Alqumber MA, Burton JP, Tagg JR, Temmerman M, Vaneechoutte M (2007) Quantitative determination by real-time PCR of four vaginal Lactobacillus species, Gardnerella vaginalis and Atopobium vaginae indicates an inverse relationship between L. gasseri and L. iners. BMC Microbiol 7:115PubMedCrossRefGoogle Scholar
  11. 11.
    Bradshaw CS, Tabrizi SN, Fairley CK, Morton AN, Rudland E, Garland SM (2006) The association of Atopobium vaginae and Gardnerella vaginalis with bacterial vaginosis and recurrence after oral metronidazole therapy. J Infect Dis 194:828–836PubMedCrossRefGoogle Scholar
  12. 12.
    Dumonceaux TJ, Schellenberg J, Goleski V, Hill JE, Jaoko W, Kimani J, Money D, Ball TB, Plummer FA, Severini A (2009) Multiplex detection of bacteria associated with normal microbiota and with bacterial vaginosis in vaginal swabs by use of oligonucleotide-coupled fluorescent microspheres. J Clin Microbiol 47:4067–4077PubMedCrossRefGoogle Scholar
  13. 13.
    Fredricks DN, Fiedler TL, Thomas KK, Mitchell CM, Marrazzo JM (2009) Changes in vaginal bacterial concentrations with intravaginal metronidazole therapy for bacterial vaginosis as assessed by quantitative PCR. J Clin Microbiol 47:721–726PubMedCrossRefGoogle Scholar
  14. 14.
    Menard JP, Fenollar F, Henry M, Bretelle F, Raoult D (2008) Molecular quantification of Gardnerella vaginalis and Atopobium vaginae loads to predict bacterial vaginosis. Clin Infect Dis 47:33–43PubMedCrossRefGoogle Scholar
  15. 15.
    Mitchell CM, Hitti JE, Agnew KJ, Fredricks DN (2009) Comparison of oral and vaginal metronidazole for treatment of bacterial vaginosis in pregnancy: impact on fastidious bacteria. BMC Infect Dis 9:89PubMedCrossRefGoogle Scholar
  16. 16.
    Menard JP, Mazouni C, Salem-Cherif I, Fenollar F, Raoult D, Boubli L, Gamerre M, Bretelle F (2010) High vaginal concentrations of Atopobium vaginae and Gardnerella vaginalis in women undergoing preterm labor. Obstet Gynecol 115:134–140PubMedCrossRefGoogle Scholar
  17. 17.
    Forney LJ, Gajer P, Williams CJ, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Brotman RM, Davis CC, Ault K, Ravel J (2010) Comparison of self-collected and physician-collected vaginal swabs for microbiome analysis. J Clin Microbiol 48:1741–1748PubMedCrossRefGoogle Scholar
  18. 18.
    Larsson PG, Carlsson B, Fåhraeus L, Jakobsson T, Forsum U (2004) Diagnosis of bacterial vaginosis: need for validation of microscopic image area used for scoring bacterial morphotypes. Sex Transm Infect 80:63–67PubMedCrossRefGoogle Scholar
  19. 19.
    Libman MD, Kramer M, Platt R; Montreal Prematurity Study Group (2006) Comparison of Gram and Kopeloff stains in the diagnosis of bacterial vaginosis in pregnancy. Diagn Microbiol Infect Dis 54:197–201PubMedCrossRefGoogle Scholar
  20. 20.
    Ison CA, Hay PE (2002) Validation of a simplified grading of Gram stained vaginal smears for use in genitourinary medicine clinics. Sex Transm Infect 78:413–415PubMedCrossRefGoogle Scholar
  21. 21.
    Menard JP, Mazouni C, Fenollar F, Raoult D, Boubli L, Bretelle F (2010) Diagnostic accuracy of quantitative real-time PCR assay versus clinical and Gram stain identification of bacterial vaginosis. Eur J Clin Microbiol Infect Dis 29:1547–1552PubMedCrossRefGoogle Scholar
  22. 22.
    Knox J, Tabrizi SN, Miller P, Petoumenos K, Law M, Chen S, Garland SM (2002) Evaluation of self-collected samples in contrast to practitioner-collected samples for detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis by polymerase chain reaction among women living in remote areas. Sex Transm Dis 29:647–654PubMedCrossRefGoogle Scholar
  23. 23.
    Ogilvie GS, Patrick DM, Schulzer M, Sellors JW, Petric M, Chambers K, White R, FitzGerald JM (2005) Diagnostic accuracy of self collected vaginal specimens for human papillomavirus compared to clinician collected human papillomavirus specimens: a meta-analysis. Sex Transm Infect 81:207–212PubMedCrossRefGoogle Scholar
  24. 24.
    Petignat P, Hankins C, Walmsley S, Money D, Provencher D, Pourreaux K, Kornegay J, Rouah F, Coutlée F; Canadian Women’s HIV Study Group (2005) Self-sampling is associated with increased detection of human papillomavirus DNA in the genital tract of HIV-seropositive women. Clin Infect Dis 41:527–534PubMedCrossRefGoogle Scholar
  25. 25.
    Baay MF, Verhoeven V, Lambrechts HA, Pattyn GG, Lardon F, Van Royen P, Vermorken JB (2009) Feasibility of collecting self-sampled vaginal swabs by mail: quantity and quality of genomic DNA. Eur J Clin Microbiol Infect Dis 28:1285–1289PubMedCrossRefGoogle Scholar
  26. 26.
    Masek BJ, Arora N, Quinn N, Aumakhan B, Holden J, Hardick A, Agreda P, Barnes M, Gaydos CA (2009) Performance of three nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae by use of self-collected vaginal swabs obtained via an Internet-based screening program. J Clin Microbiol 47:1663–1667PubMedCrossRefGoogle Scholar
  27. 27.
    Pararas MV, Skevaki CL, Kafetzis DA (2006) Preterm birth due to maternal infection: causative pathogens and modes of prevention. Eur J Clin Microbiol Infect Dis 25:562–569PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J.-P. Menard
    • 1
    • 2
  • F. Fenollar
    • 2
  • D. Raoult
    • 2
  • L. Boubli
    • 1
  • F. Bretelle
    • 1
    • 2
    • 3
  1. 1.Service de Gynécologie Obstétrique, Hôpital Nord MarseilleMarseilleFrance
  2. 2.Unité des Rickettsies, IFR 48, CNRS-IRD UMR 6236, Faculté de MédecineUniversité de la MéditerranéeMarseilleFrance
  3. 3.Centre d’Investigation CliniqueMarseilleFrance

Personalised recommendations