Molecular analysis of population structure and antibiotic resistance of Klebsiella isolates from a three-year surveillance program in Florence hospitals, Italy

Abstract

We report the results of a three-year surveillance program of Klebsiella spp. in six hospitals in Florence (Italy). A total of 172 Klebsiella isolates were identified and typed by AFLP: 122 were K. pneumoniae and 50 were K. oxytoca. Most K. pneumoniae (80%) and K. oxytoca (93%) showed unrelated AFLP profiles. Beside this heterogeneous population structure, we found five small epidemic clonal groups of K. pneumoniae. Four of these groups were involved in outbreak events, three of which occurred in neonatal ICUs. The fifth clonal group spread in three different wards of two hospitals. Only one non-epidemic clonal group of K. oxytoca was detected. The frequencies of isolates with multiple antibiotic resistances increased with time; at the end of the study period, most K. pneumoniae were resistant to all the antibiotics tested. A PCR analysis of seven ertapenem resistant isolates was unable to detect any of the major genes known to underlie carbapenem resistance in K. pneumoniae.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Reference

  1. 1.

    Riley LW (2004) Hospital infections: gram-negative bacteria. In: Molecular epidemiology of infectious diseases: principle and practices. ASM Press, Washington, DC

  2. 2.

    Rosenthal VD, Maki D, Jamulitrat S, Medeiros EA, Todi SK, Gomez DY, Leblebicioglu HH, Khader IA, Novales MGM, Berba R, Wong FMR, Barkat A, Pino OR, Dueñas L, Mitrev Z, Bijie H, Gurskis V, Kanj SS, Mapp T, Hidalgo RF, Jaballah NB, Raka L, Gikas A, Ahmed A, Thu le TA, Guzman-Siritt ME (2010) International Nosocomial Infection Control Consortium (INICC) report, data summary for 2003–2008, issued June 2009. AJIC 38:95–104

    Google Scholar 

  3. 3.

    Cartelle M, del Mar TM, Pertega S, Beceiro A, Dominguez MA, Velasco D, Molina F, Villanueva R, Bou G (2004) Risk factors for colonization and infection in a hospital outbreak caused by a strain of Klebsiella pneumoniae with reduced susceptibility to expanded-spectrum cephalosporins. J Clin Microbiol 42:4242–4249

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Kühn I, Iversen A, Burman LG, Olsson-Liljequist B, Franklin A, Finn M, Aarestrup F, Seyfarth AM, Blanch AR, Vilanova X, Taylor H, Caplin J, Moreno MA, Dominguez L, Herrero IA, Möllby R (2003) Comparison of enterococcal populations in animals, humans, and the environment—a European study. Int J Food Microbiol 88:133–145

    PubMed  Article  Google Scholar 

  5. 5.

    Macrae MB, Shannon KP, Rayner DM, Kaiser AM, Hoffman PN, French GL (2001) A simultaneous outbreak on a neonatal unit of two strains of multiply antibiotic resistant Klebsiella pneumoniae controllable only by ward closure. J Hosp Infect 49:183–192

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Podschun R, Ullmann U (1998) Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity Factors. Clin Microbiol Rev 11:589–603

    PubMed  CAS  Google Scholar 

  7. 7.

    Paterson DL, Ko W-C, Gottberg AV, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G, Klugman KP, Bonomo RA, Rice LB, Wagener MM, McCormack JG, Yu VL (2004) International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum Î2-Lactamase production in nosocomial infections. Ann Intern Med 140:26–32

    PubMed  Google Scholar 

  8. 8.

    Pena C, Pujol M, Ardanuy C, Ricart A, Pallares R, Linares J, Ariza J, Gudiol F (1998) Epidemiology and successful control of a large outbreak due to Klebsiella pneumoniae producing extended spectrum beta-lactamases. Antimicrob Agents Chemother 42:53–58

    PubMed  CAS  Google Scholar 

  9. 9.

    Bradford PA, Bratu S, Urban C, Visalli M, Mariano N, Landman D, Rahal JJ, Brooks S, Cebular S, Quale J (2004) Emergence carbapenem-resistant Klebsiella species possessing the class carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM- beta-lactamases in New York City. Clin Infect Dis 39:55–60

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Schwaber MJ, Carmeli Y (2008) Carbapenem-resistant Enterobacteriaceae: a potential threat. JAMA 300:2911–2913

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Poirel L, Hèritier C, Tolun V, Nordmann P (2004) Emergences of oxacillinases-mediated resistance to imipinem in Klebsiella pneumoniae. Antimicrob Agents Chemoter 48:15–22

    Article  CAS  Google Scholar 

  12. 12.

    Queenam A, Bush K (2007) Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev 20:440–458

    Article  Google Scholar 

  13. 13.

    Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee SG (2008) Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 29:1099–1106

    PubMed  Article  Google Scholar 

  14. 14.

    Lledo W, Hernandez M, Lopez E et al (2009) Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR 58:256–260

    Google Scholar 

  15. 15.

    Maltezou HC, Giakkoupi P, Maragos A, Bolikas M, Raftopoulos V, Papahatzaki H, Vrouhos G, Liakou V, Vatopoulos AC (2009) Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J Infect 58:213–219

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Wendt C, Schütt S, Dalpke AH, Konrad M, Mieth M, Trierweiler-Hauke B, Weigand MA, Zimmermann S, Biehler K, Jonas D (2010) First outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in Germany. Eur J Clin Microbiol Infect Dis 29:563–570

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Donnarumma F, Sergi S, Indorato C, Mastromei G, Monnanni R, Nicoletti P, Pecile P, Cecconi D, Mannino R, Bencini S, Fanci R, Bosi A, Casalone E (2010) Molecular characterization of acinetobacter isolates collected in intensive care units of six hospitals in Florence, Italy, during a 3-year surveillance program: a population structure analysis. J Clin Microbiol 48:1297–1304

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Sergi S, Donnarumma F, Mastromei G, Goti E, Nicoletti P, Pecile P, Cecconi D, Mannino R, Fanci R, Bosi A, Bartolozzi B, Casalone E (2009) Molecular surveillance and population structure analysis of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in high-risk wards. J Clin Microbiol 47:3246–3254

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    CLSI (2009) Performance standards for antimicrobial susceptibility testing, 19th informational supplement. Clinical and Laboratory Standards Institute, Wayne, PA

  20. 20.

    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Savelkoul PHM, Aarts HJM, de Haas J, Dijkshoorn L, Duim B, Otsen M, Rademaker JLW, Schouls L, Lenstra JA (1999) Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol 37:3083–3091

    PubMed  CAS  Google Scholar 

  22. 22.

    Gaston MA, Hunter PR (1989) Efficient selection of tests for bacteriological typing schemes. J Clin Pathol 42:763–766

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  24. 24.

    Dalmastri C, Fiore A, Alisi C, Bevivino A, Tabacchioni S, Giuliano G, Sprocati AR, Segre L, Mahenthiralingam E, Chiarini L, Vandamme P (2003) A rhizospheric Burkholderia cepacia complex population: genotypic and phenotypic diversity of Burkholderia cenocepacia and Burkholderia ambifaria. FEMS Microbiol Ecol 46:179–187

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Wright S (1978) Evolution and the genetics of populations, vol. 4. Variability within and among natural populations. University of Chicago Press, Chicago, IL

    Google Scholar 

  26. 26.

    Excoffier L, Laval G, Schneider S (2005) Arlequin version 31: an integrated software package for population genetics data analysis. Evol Bioinforma Online 1:47–50

    CAS  Google Scholar 

  27. 27.

    Rasheed JK, Jay C, Metchock B, Berkowitz F, Weigel L, Crellin J, Steward C, Hill B, Medeiros AA, Tenover FC (1997) Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob Agents Chemother 41:647–653

    PubMed  CAS  Google Scholar 

  28. 28.

    Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Ellington MJ, Kistler J, Livermore DM, Woodford N (2007) Multiplex PCR for rapid detection of genes encoding aquired metallo-β-lactamases. J Antimicrob Chemoter 59:321–322

    Article  CAS  Google Scholar 

  30. 30.

    Weldhagen GF (2004) Rapid detection and sequence-specific differentiation of extended-spectrum β-lactamase GES-2 from Pseudomonas aeruginosa by use of a real time PCR assay. Antimicrob Agents Chemother 48:4059–4062

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Giani T, D'Andrea MM, Pecile P, Borgianni L, Nicoletti P, Tonelli F, Bartoloni A, Rossolini GM (2009) Emergence in Italy of Klebsiella pneumoniae sequence type 258 producing KPC-3 carbapenemase. J Clin Microbiol 47:3793–3794

    PubMed  Article  Google Scholar 

  32. 32.

    Brisse S, Verhoef J (2001) Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 51:915–924

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Ayan M, Kuzucu C, Durmaz R, Aktas E, Cizmeci Z (2003) Analysis of three outbreaks due to Klebsiella species in a neonatal intensive care unit. Infect Control Hosp Epidemiol 24:495–500

    PubMed  Article  Google Scholar 

  34. 34.

    van der Zwet WC, Kaiser AM, van Elburg RM, Berkhof J, Fetter WPF, Parlevliet GA, Vandenbroucke-Grauls CMJE (2005) Nosocomial infections in a Dutch neonatal intensive care unit: surveillance study with definitions for infection specifically adapted for neonates. J Hosp Infect 61:300–311

    PubMed  Article  Google Scholar 

  35. 35.

    Leavitt A, Chmelnitsky I, Colodner R, Ofek I, Carmeli Y, Shiri N-V (2009) Ertapenem resistance among extended-spectrum-β-lactamase-producing Klebsiella pneumoniae isolates. J Clin Microbiol 47:969–974

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Mc Gettigan SE, Andreacchio K, Edelstein PH (2009) Specificity of ertapenem susceptibility screening for detection of Klebsiella pneumoniae carbapenemases. J Clin Microbiol 47:785–786

    Article  Google Scholar 

  37. 37.

    Pournaras S, Protonotariou E, Voulgari E, Kristo I, Dimitroulia E, Vitti D, Tsalidou M, Maniatis AN, Tsakris A, Sofianou D (2009) Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece. J Antimicrob Chemother 64:348–352

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Woodford N, Dallow JWT, Hill RLR, Palepou MFI, Pike R, Ward ME, Warner M, Livermore DM (2007) Ertapenem resistance among Klebsiella and Enterobacter submitted in the UK to a reference laboratory. Int J Antimicrob Agents 29:456–459

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Coque TM, Oliver A, Perez-Diaz JC, Baquero F, Canton R (2002) Genes encoding TEM-4, SHV-2, and CTX-M-10 extended-spectrum beta-lactamases are carried by multiple Klebsiella pneumoniae clones in a single hospital (Madrid, 1989 to 2000). Antimicrob Agents Chemother 46:500–510

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Regione Toscana.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Casalone.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Donnarumma, F., Indorato, C., Mastromei, G. et al. Molecular analysis of population structure and antibiotic resistance of Klebsiella isolates from a three-year surveillance program in Florence hospitals, Italy. Eur J Clin Microbiol Infect Dis 31, 371–378 (2012). https://doi.org/10.1007/s10096-011-1319-6

Download citation

Keywords

  • Ertapenem
  • Unweighted Pair Group Method With Arithmetic
  • AFLP Analysis
  • Clonal Group
  • Carbapenem Resistance