Skip to main content
Log in

Neutral metallated and meso-substituted porphyrins as antimicrobial agents against Gram-positive pathogens

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is a bacterial pathogen that causes severe infections among humans. The increasing emergence of antibiotic resistance necessitates the development of new strategies to combat the spread of disease. One approach is photodynamic inactivation using porphyrin photosensitizers, which generate superoxide and other radicals in the presence of light, causing cell death via the oxidation of proteins and lipids. In this study, we analyzed a novel library of meso-substituted and metallated porphyrins for activity against multidrug-resistant S. aureus. From a library of 251 compounds, 51 showed antimicrobial activity, in three discrete classes of activity: those that functioned only in light, those that had toxicity only in darkness, and those that displayed activity regardless of illumination. We further demonstrated the broad-spectrum activity of these compounds against a variety of pathogens, including Bacillus anthracis, Enterococcus faecalis, and Escherichia coli. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) analyses of lead compounds (XPZ-263 and XPZ-271) revealed strong activity and killing towards methicillin-resistant S. aureus (MRSA) strains. An analysis of mutation frequencies revealed low incidences of resistance to lead compounds by E. coli and MRSA. Finally, an exploration of the underlying mechanism of action suggests that these compounds do not depend solely upon light-induced radical generation for toxicity, highlighting their potential for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tonks A (2007) MRSA may kill more US citizens than HIV. Br Med J 335:850

    Google Scholar 

  2. Graves SF, Kobayashi SD, DeLeo FR (2010) Community-associated methicillin-resistant Staphylococcus aureus immune evasion and virulence. J Mol Med 88:109–114

    Article  PubMed  CAS  Google Scholar 

  3. Stephens J, Davies L (2008) The war on superbugs. Scrip Magazine 2401:44–47

    Google Scholar 

  4. Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK; Active Bacterial Core surveillance (ABCs) MRSA Investigators (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771

    Article  PubMed  CAS  Google Scholar 

  5. Centers for Disease Control and Prevention (CDC) (2002). Vancomycin-resistant Staphylococcus aureus—Pennsylvania, 2002. MMWR Morb Mortal Wkly Rep 51:902

    Google Scholar 

  6. Kuz’menko OM, Gruber IM, Priiatkin RG (2010) Prevention and immunotherapy of staphylococcal infections with bacterial vaccines. Zh Mikrobiol Epidemiol Immunobiol 5:106–112

    PubMed  Google Scholar 

  7. Malik Z, Hanania J, Nitzan Y (1990) Bactericidal effects of photoactivated porphyrins—an alternative approach to antimicrobial drugs. J Photochem Photobiol B 5:281–293

    Article  PubMed  CAS  Google Scholar 

  8. Bozja J, Yi K, Shafer WM, Stojiljkovic I (2004) Porphyrin-based compounds exert antibacterial action against the sexually transmitted pathogens Neisseria gonorrhoeae and Haemophilus ducreyi. Int J Antimicrob Agents 24:578–584

    Article  PubMed  CAS  Google Scholar 

  9. Stojiljkovic I, Kumar V, Srinivasan N (1999) Non-iron metalloporphyrins: potent antibacterial compounds that exploit haem/Hb uptake systems of pathogenic bacteria. Mol Microbiol 31:429–442

    Article  PubMed  CAS  Google Scholar 

  10. Ishikawa S, Suzuki K, Fukuda E, Arihara K, Yamamoto Y, Mukai T, Itoh M (2010) Photodynamic antimicrobial activity of avian eggshell pigments. FEBS Lett 584:770–774

    Article  PubMed  CAS  Google Scholar 

  11. Gois MM, Kurachi C, Santana EJ, Mima EG, Spolidório DM, Pelino JE, Salvador Bagnato V (2010) Susceptibility of Staphylococcus aureus to porphyrin-mediated photodynamic antimicrobial chemotherapy: an in vitro study. Lasers Med Sci 25:391–395

    Article  PubMed  Google Scholar 

  12. Mueller G, Waldeck W, Braun K (2010) From green to red—To more dead? Autofluorescent proteins as photosensitizers. J Photochem Photobiol B 98:95–98

    Article  PubMed  CAS  Google Scholar 

  13. Grinholc M, Szramka B, Olender K, Graczyk A (2007) Bactericidal effect of photodynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers. Acta Biochim Pol 54:665–670

    PubMed  CAS  Google Scholar 

  14. Jori G, Brown SB (2004) Photosensitized inactivation of microorganisms. Photochem Photobiol Sci 3:403–405

    Article  PubMed  CAS  Google Scholar 

  15. Ehrenberg B, Malik Z, Nitzan Y (1985) Fluorescence spectral changes of hematoporphyrin derivative upon binding to lipid vesicles, Staphylococcus aureus and Escherichia coli cells. Photochem Photobiol 41:429–435

    Article  PubMed  CAS  Google Scholar 

  16. Banfi S, Caruso E, Buccafurni L, Battini V, Zazzaron S, Barbieri P, Orlandi V (2006) Antibacterial activity of tetraaryl-porphyrin photosensitizers: an in vitro study on Gram negative and Gram positive bacteria. J Photochem Photobiol B 85:28–38

    Article  PubMed  CAS  Google Scholar 

  17. Hamblin MR, O’Donnell DA, Murthy N, Rajagopalan K, Michaud N, Sherwood ME, Hasan T (2002) Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J Antimicrob Chemother 49:941–951

    Article  PubMed  CAS  Google Scholar 

  18. Jemli M, Alouini Z, Sabbahi S, Gueddari M (2002) Destruction of fecal bacteria in wastewater by three photosensitizers. J Environ Monit 4:511–516

    Article  PubMed  CAS  Google Scholar 

  19. Merchat M, Bertolini G, Giacomini P, Villanueva A, Jori G (1996) Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B 32:153–157

    Article  PubMed  CAS  Google Scholar 

  20. Donnelly RF, Cassidy CM, Loughlin RG, Brown A, Tunney MM, Jenkins MG, McCarron PA (2009) Delivery of Methylene Blue and meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate from cross-linked poly(vinyl alcohol) hydrogels: a potential means of photodynamic therapy of infected wounds. J Photochem Photobiol B 96:223–231

    Article  PubMed  CAS  Google Scholar 

  21. Gao GY, Ruppel JV, Fields KB, Xu X, Chen Y, Zhang XP (2008) Synthesis of diporphyrins via palladium-catalyzed C–O bond formation: effective access to chiral diporphyrins. J Org Chem 73:4855–4858

    Article  PubMed  CAS  Google Scholar 

  22. Gao GY, Ruppel JV, Allen DB, Chen Y, Zhang XP (2007) Synthesis of beta-functionalized porphyrins via palladium-catalyzed carbon-heteroatom bond formations: expedient entry into beta-chiral porphyrins. J Org Chem 72:9060–9066

    Article  PubMed  CAS  Google Scholar 

  23. Gao GY, Colvin AJ, Chen Y, Zhang XP (2004) Synthesis of meso-arylsulfanyl- and alkylsulfanyl-substituted porphyrins via palladium-mediated C–S bond formation. J Org Chem 69:8886–8892

    Article  PubMed  CAS  Google Scholar 

  24. Chen Y, Fields KB, Zhang XP (2004) Bromoporphyrins as versatile synthons for modular construction of chiral porphyrins: cobalt-catalyzed highly enantioselective and diastereoselective cyclopropanation. J Am Chem Soc 126:14718–14719

    Article  PubMed  CAS  Google Scholar 

  25. Gao GY, Chen Y, Zhang XP (2004) General synthesis of meso-amidoporphyrins via palladium-catalyzed amidation. Org Lett 6:1837–1840

    Article  PubMed  CAS  Google Scholar 

  26. Chen Y, Zhang XP (2004) Vitamin B12 derivatives as natural asymmetric catalysts: enantioselective cyclopropanation of alkenes. J Org Chem 69:2431–2435

    Article  PubMed  CAS  Google Scholar 

  27. Gao GY, Colvin AJ, Chen Y, Zhang XP (2003) Versatile synthesis of meso-aryloxy- and alkoxy-substituted porphyrins via palladium-catalyzed C–O cross-coupling reactions. Org Lett 5:3261–3264

    Article  PubMed  CAS  Google Scholar 

  28. Gao GY, Chen Y, Zhang XP (2003) General and efficient synthesis of arylamino- and alkylamino-substituted diphenylporphyrins and tetraphenylporphyrins via palladium-catalyzed multiple amination reactions. J Org Chem 68:6215–6221

    Article  PubMed  CAS  Google Scholar 

  29. Chen Y, Zhang XP (2003) Facile and efficient synthesis of meso-arylamino- and alkylamino-substituted porphyrins via palladium-catalyzed amination. J Org Chem 68:4432–4438

    Article  PubMed  CAS  Google Scholar 

  30. Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK, Foster SJ (2002) sigmaB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325–4. J Bacteriol 184:5457–5467

    Article  PubMed  CAS  Google Scholar 

  31. Sterne M (1939) The immunization of laboratory animals against anthrax. Onderstepoort J Vet Sci Anim Indust 13:313–317

    Google Scholar 

  32. Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387

    Article  PubMed  CAS  Google Scholar 

  33. Kadish KM, Smith KM, Guillard R (2000) The porphyrin handbook. Academic Press, San Diego

    Google Scholar 

  34. Pluym M, Vermeiren CL, Mack J, Heinrichs DE, Stillman MJ (2007) Protoporphyrin IX and heme binding properties of Staphylococcus aureus IsdC. J Porphyrins Phthalocyanines 11:165–171

    Article  CAS  Google Scholar 

  35. Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (2006) The prokaryotes: a handbook on the biology of bacteria, 3rd edn. Springer, New York, London

    Google Scholar 

  36. Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Schneewind O (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299:906–9

    Article  PubMed  CAS  Google Scholar 

  37. Ooi N, Miller K, Hobbs J, Rhys-Williams W, Love W, Chopra I (2009) XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J Antimicrob Chemother 64:735–740

    Article  PubMed  CAS  Google Scholar 

  38. Ooi N, Miller K, Randall C, Rhys-Williams W, Love W, Chopra I (2010) XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms. J Antimicrob Chemother 65:72–78

    Article  PubMed  CAS  Google Scholar 

  39. Farrell DJ, Robbins M, Rhys-Williams W, Love WG (2010) In vitro activity of XF-73, a novel antibacterial agent, against antibiotic-sensitive and -resistant Gram-positive and Gram-negative bacterial species. Int J Antimicrob Agents 35:531–536

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Eric Skaar for kindly sharing bacterial strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Shaw.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 519 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burda, W.N., Fields, K.B., Gill, J.B. et al. Neutral metallated and meso-substituted porphyrins as antimicrobial agents against Gram-positive pathogens. Eur J Clin Microbiol Infect Dis 31, 327–335 (2012). https://doi.org/10.1007/s10096-011-1314-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1314-y

Keywords

Navigation