Skip to main content
Log in

Specific IgG antibody responses may be used to monitor leprosy treatment efficacy and as recurrence prognostic markers

European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Although curable, leprosy requires better diagnostic and prognostic tools to accompany therapeutic strategies. We evaluated the serum samples of leprosy patients from Venezuela and Brazil for reactivity against the specific recombinant proteins, ML0405 and ML2331, and the LID-1 fusion protein that incorporates both of these antigens. Antigen-specific IgG was highest in lepromatous leprosy patients (LL) and decreased across the disease spectrum, such that only a small subset of true tuberculoid patients (TT) tested positive. The impact of multidrug therapy (MDT) on these antibody responses was also examined. Several years after treatment, the vast majority of Venezuelan patients did not possess circulating anti-LID-1, anti-ML0405, and anti-ML2331 IgG, and the seropositivity of the remaining cases could be attributed to irregular treatment. At discharge, the magnitude and proportion of positive responses of Brazilian patients against the proteins and phenolic glycolipid (PGL)-I were lower for most of the clinical forms. The monthly examination of IgG levels in LL patient sera after MDT initiation indicated that these responses are significantly reduced during treatment. Thus, responses against these antigens positively correlate with bacillary load, clinical forms, and operational classification at diagnosis. Our data indicate that these responses could be employed as an auxiliary tool for the assessment of treatment efficacy and disease relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

BB:

Borderline borderline

BI:

Bacterial index

BL:

Borderline lepromatous

BT:

Borderline tuberculoid

C:

Control

EC:

Endemic control

HHC:

Healthy household contact

LI:

Leprosy indeterminate

LID:

Leprosy Infectious Disease Research Institute (IDRI) diagnostic

LL:

Lepromatous leprosy

MB:

Multibacillary

MDT:

Multidrug therapy

NEC:

Non-endemic control

PB:

Paucibacillary

PGL:

Phenolic glycolipid

TT:

True tuberculoid

References

  1. Scollard DM (2004) Classification of leprosy: a full color spectrum, or black and white? Int J Lepr Other Mycobact Dis 72:166–168

    Article  PubMed  Google Scholar 

  2. Ridley DS, Jopling WH (1966) Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis 34:255–273

    PubMed  CAS  Google Scholar 

  3. World Health Organization (WHO) (2007) Global leprosy situation, 2007. Wkly Epidemiol Rec 82:225–232

    Google Scholar 

  4. Meima A, Richardus JH, Habbema JD (2004) Trends in leprosy case detection worldwide since 1985. Lepr Rev 75:19–33

    PubMed  Google Scholar 

  5. Ji B, Jamet P, Sow S, Perani EG, Traore I, Grosset JH (1997) High relapse rate among lepromatous leprosy patients treated with rifampin plus ofloxacin daily for 4 weeks. Antimicrob Agents Chemother 41:1953–1956

    PubMed  CAS  Google Scholar 

  6. Cambau E, Bonnafous P, Perani E, Sougakoff W, Ji B, Jarlier V (2002) Molecular detection of rifampin and ofloxacin resistance for patients who experience relapse of multibacillary leprosy. Clin Infect Dis 34:39–45

    Article  PubMed  CAS  Google Scholar 

  7. Maeda S, Matsuoka M, Nakata N, Kai M, Maeda Y, Hashimoto K et al (2001) Multidrug resistant Mycobacterium leprae from patients with leprosy. Antimicrob Agents Chemother 45:3635–3639

    Article  PubMed  CAS  Google Scholar 

  8. Matsuoka M, Kashiwabara Y, Liangfen Z, Goto M, Kitajima S (2003) A second case of multidrug-resistant Mycobacterium leprae isolated from a Japanese patient with relapsed lepromatous leprosy. Int J Lepr Other Mycobact Dis 71:240–243

    Article  PubMed  Google Scholar 

  9. Matsuoka M, Kashiwabara Y, Namisato M (2000) A Mycobacterium leprae isolate resistant to dapsone, rifampin, ofloxacin and sparfloxacin. Int J Lepr Other Mycobact Dis 68:452–455

    PubMed  CAS  Google Scholar 

  10. Reece ST, Ireton G, Mohamath R, Guderian J, Goto W, Gelber R et al (2006) ML0405 and ML2331 are antigens of Mycobacterium leprae with potential for diagnosis of leprosy. Clin Vaccine Immunol 13:333–340

    Article  PubMed  CAS  Google Scholar 

  11. Duthie MS, Goto W, Ireton GC, Reece ST, Cardoso LP, Martelli CM et al (2007) Use of protein antigens for early serological diagnosis of leprosy. Clin Vaccine Immunol 14:1400–1408

    Article  PubMed  CAS  Google Scholar 

  12. Duthie MS, Ireton GC, Kanaujia GV, Goto W, Liang H, Bhatia A et al (2008) Selection of antigens and development of prototype tests for point-of-care leprosy diagnosis. Clin Vaccine Immunol 15:1590–1597

    Article  PubMed  CAS  Google Scholar 

  13. Duthie MS, Hay MN, Morales CZ, Carter L, Mohamath R, Ito L et al (2010) Rational design and evaluation of a multiepitope chimeric fusion protein with the potential for leprosy diagnosis. Clin Vaccine Immunol 17:298–303

    Article  PubMed  CAS  Google Scholar 

  14. Rudeeaneksin J, Srisungngam S, Sawanpanyalert P, Sittiwakin T, Likanonsakul S, Pasadorn S et al (2008) LightCycler real-time PCR for rapid detection and quantitation of Mycobacterium leprae in skin specimens. FEMS Immunol Med Microbiol 54:263–270

    Article  PubMed  CAS  Google Scholar 

  15. Lobato J, Silva DA, Mineo TW, Amaral JD, Segundo GR, Costa-Cruz JM et al (2006) Detection of immunoglobulin G antibodies to Neospora caninum in humans: high seropositivity rates in patients who are infected by human immunodeficiency virus or have neurological disorders. Clin Vaccine Immunol 13:84–89

    Article  PubMed  CAS  Google Scholar 

  16. Rada E, Ulrich M, Aranzazu N, Rodriguez V, Centeno M, Gonzalez I et al (1997) A follow-up study of multibacillary Hansen’s disease patients treated with multidrug therapy (MDT) or MDT + immunotherapy (IMT). Int J Lepr Other Mycobact Dis 65:320–327

    PubMed  CAS  Google Scholar 

  17. Cho SN, Cellona RV, Villahermosa LG, Fajardo TT Jr, Balagon MV, Abalos RM et al (2001) Detection of phenolic glycolipid I of Mycobacterium leprae in sera from leprosy patients before and after start of multidrug therapy. Clin Diagn Lab Immunol 8:138–142

    PubMed  CAS  Google Scholar 

  18. Silva EA, Iyer A, Ura S, Lauris JR, Naafs B, Das PK et al (2007) Utility of measuring serum levels of anti-PGL-I antibody, neopterin and C-reactive protein in monitoring leprosy patients during multi-drug treatment and reactions. Trop Med Int Health 12:1450–1458

    Article  PubMed  CAS  Google Scholar 

  19. Lockwood DN, Reid AJ (2001) The diagnosis of leprosy is delayed in the United Kingdom. QJM 94:207–212

    Article  PubMed  CAS  Google Scholar 

  20. Flower C, Gaskin D, Marquez S (2007) A case of recurrent rash and leg numbness mimicking systemic rheumatic disease: the occurrence of leprosy in a nonendemic area. J Clin Rheumatol 13:143–145

    Article  PubMed  Google Scholar 

  21. Anderson H, Stryjewska B, Boyanton BL, Schwartz MR (2007) Hansen disease in the United States in the 21st century: a review of the literature. Arch Pathol Lab Med 131:982–986

    PubMed  Google Scholar 

  22. Ellard GA, Pannikar VK, Jesudasan K, Christian M (1988) Clofazimine and dapsone compliance in leprosy. Lepr Rev 59:205–213

    PubMed  CAS  Google Scholar 

  23. Honrado ER, Tallo V, Balis AC, Chan GP, Cho SN (2008) Noncompliance with the World Health Organization—multidrug therapy among leprosy patients in Cebu, Philippines: its causes and implications on the leprosy control program. Dermatol Clin 26:221–229

    Article  PubMed  CAS  Google Scholar 

  24. Miller RA, Gorder D, Harnisch JP (1987) Antibodies to phenolic glycolipid-I during long-term therapy: serial measurements in individual patients. Int J Lepr Other Mycobact Dis 55:633–636

    PubMed  CAS  Google Scholar 

  25. Roche PW, Britton WJ, Failbus SS, Neupane KD, Theuvenet WJ (1993) Serological monitoring of the response to chemotherapy in leprosy patients. Int J Lepr Other Mycobact Dis 61:35–43

    PubMed  CAS  Google Scholar 

  26. Chanteau S, Cartel JL, Celerier P, Plichart R, Desforges S, Roux J (1989) PGL-I antigen and antibody detection in leprosy patients: evolution under chemotherapy. Int J Lepr Other Mycobact Dis 57:735–743

    PubMed  CAS  Google Scholar 

  27. Ebenezer GJ, Norman G, Joseph GA, Daniel S, Job CK (2002) Drug resistant-Mycobacterium leprae—results of mouse footpad studies from a laboratory in south India. Indian J Lepr 74:301–312

    PubMed  CAS  Google Scholar 

  28. Williams DL, Gillis TP (2004) Molecular detection of drug resistance in Mycobacterium leprae. Lepr Rev 75:118–130

    PubMed  Google Scholar 

  29. Matsuoka M, Budiawan T, Aye KS, Kyaw K, Tan EV, Cruz ED et al (2007) The frequency of drug resistance mutations in Mycobacterium leprae isolates in untreated and relapsed leprosy patients from Myanmar, Indonesia and the Philippines. Lepr Rev 78:343–352

    PubMed  Google Scholar 

  30. Roche PW, Neupane KD, Failbus SS, Butlin CR (2000) Dapsone drug resistance in the MDT era. Int J Lepr Other Mycobact Dis 68:323–325

    PubMed  CAS  Google Scholar 

  31. Grosset JH, Guelpa-Lauras CC, Bobin P, Brucker G, Cartel JL, Constant-Desportes M et al (1989) Study of 39 documented relapses of multibacillary leprosy after treatment with rifampin. Int J Lepr Other Mycobact Dis 57:607–614

    PubMed  CAS  Google Scholar 

  32. Gelber RH, Murray LP, Siu P, Tsang M, Rea TH (1994) Efficacy of minocycline in single dose and at 100 mg twice daily for lepromatous leprosy. Int J Lepr Other Mycobact Dis 62:568–573

    PubMed  CAS  Google Scholar 

  33. Ji B, Grosset J (2000) Combination of rifapentine–moxifloxacin–minocycline (PMM) for the treatment of leprosy. Lepr Rev 71(Suppl):S81–S87

    PubMed  Google Scholar 

  34. Ji B, Perani EG, Petinom C, N’Deli L, Grosset JH (1994) Clinical trial of ofloxacin alone and in combination with dapsone plus clofazimine for treatment of lepromatous leprosy. Antimicrob Agents Chemother 38:662–667

    PubMed  CAS  Google Scholar 

  35. Balagon MF, Cellona RV, Abalos RM, Gelber RH, Saunderson PR (2010) The efficacy of a four-week, ofloxacin-containing regimen compared with standard WHO-MDT in PB leprosy. Lepr Rev 81:27–33

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was conducted with support from the American Leprosy Missions and the National Institutes of Health (1R43AI066613-01A1 and 2R44AI066613-02). The National Reference Center of Leprosy, Uberlândia, Brazil, was also supported by the Brazilian Ministry of Health, DECIT/MS, CNPq/MCT, CAPES/MEC, and FAPEMIG. The Infectious Disease Research Institute (IDRI) is a member of the IDEAL (Initiative for Diagnostic and Epidemiological Assays for Leprosy) Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Duthie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duthie, M.S., Hay, M.N., Rada, E.M. et al. Specific IgG antibody responses may be used to monitor leprosy treatment efficacy and as recurrence prognostic markers. Eur J Clin Microbiol Infect Dis 30, 1257–1265 (2011). https://doi.org/10.1007/s10096-011-1221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-011-1221-2

Keywords

Navigation