Bactericidal synergy of lysostaphin in combination with antimicrobial peptides

  • A. P. Desbois
  • P. J. Coote


Drug-resistant staphylococci constitute a serious problem that urgently requires the discovery of new therapeutic agents. There has been a resurgence in interest in using lysostaphin (a specific anti-staphylococcal enzyme) as a treatment for infections caused by these important pathogens. However, bacterial resistance to lysostaphin is a problem, but the use of a combination treatment may surmount this issue. In this present study, using viable counts from suspension incubations, lysostaphin is shown to be synergistically bactericidal in combination with various conventional antimicrobial peptides, the antimicrobial protein bovine lactoferrin, a lantibiotic (nisin), and certain lipopeptides used clinically (colistin, daptomycin and polymyxin B). Combinations that act in synergy are of clinical importance as these reduce the doses of the compounds needed for effective treatments and decrease the chances of resistance being selected. The use of lysostaphin in combination with a peptide may represent a new avenue in tackling drug-resistant staphylococci.


Antimicrobial Peptide Colistin Daptomycin Lipopeptides Bovine Lactoferrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schindler CA, Schuhardt VT (1964) Lysostaphin: a new bacteriolytic agent for the Staphylococcus. Proc Natl Acad Sci 51:414–421PubMedCrossRefGoogle Scholar
  2. 2.
    Martin RR, White A (1967) The selective activity of lysostaphin in vivo. J Lab Clin Med 70:1–8PubMedGoogle Scholar
  3. 3.
    Kumar JK (2008) Lysostaphin: an antistaphylococcal agent. Appl Microbiol Biotechnol 80:555–561PubMedCrossRefGoogle Scholar
  4. 4.
    Mierau I, Leij P, van Swam I, Blommestein B, Floris E, Mond J, Smid EJ (2005) Industrial-scale production and purification of a heterologous protein in Lactococcus lactis using the nisin-controlled gene expression system NICE: The case of lysostaphin. Microb Cell Fact 4:15PubMedCrossRefGoogle Scholar
  5. 5.
    Sharma R, Sharma PR, Choudhary ML, Pande A, Khatri GS (2006) Cytoplasmic expression of mature glycylglycine endopeptidase lysostaphin with an amino terminal hexa-histidine in a soluble and catalytically active form in Escherichia coli. Protein Expr Purif 45:206–215PubMedCrossRefGoogle Scholar
  6. 6.
    Szweda P, Kotłowski R, Kur J (2005) New effective sources of the Staphylococcus simulans lysostaphin. J Biotechnol 117:203–213PubMedCrossRefGoogle Scholar
  7. 7.
    Kokai-Kun JF, Chanturiya T, Mond JJ (2007) Lysostaphin as a treatment for systemic Staphylococcus aureus infection in a mouse model. J Antimicrob Chemother 60:1051–1059PubMedCrossRefGoogle Scholar
  8. 8.
    LaPlante KL (2007) In vitro activity of lysostaphin, mupirocin, and tea tree oil against clinical methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 57:413–418PubMedCrossRefGoogle Scholar
  9. 9.
    Placencia FX, Kong L, Weisman LE (2009) Treatment of methicillin-resistant Staphylococcus aureus in neonatal mice: Lysostaphin versus vancomycin. Pediatr Res 65:420–424PubMedCrossRefGoogle Scholar
  10. 10.
    Desbois AP, Gemmell CG, Coote PJ (2010) In vivo efficacy of the antimicrobial peptide ranalexin in combination with the endopeptidase lysostaphin against wound and systemic meticillin-resistant Staphylococcus aureus (MRSA) infections. Int J Antimicrob Agents 35:559–565PubMedCrossRefGoogle Scholar
  11. 11.
    Pangule RC, Brooks SJ, Dinu CZ, Bale SS, Salmon SL, Zhu G, Metzger DW, Kane RS, Dordick JS (2010) Antistaphylococcal nanocomposite films based on enzyme-nanotube conjugates. ACS Nano 4:3993–4000PubMedCrossRefGoogle Scholar
  12. 12.
    Boyle-Vavra S, Carey RB, Daum RS (2001) Development of vancomycin and lysostaphin resistance in a methicillin-resistant Staphylococcus aureus isolate. J Antimicrob Chemother 48:617–625PubMedCrossRefGoogle Scholar
  13. 13.
    Climo MW, Ehlert K, Archer GL (2001) Mechanism and suppression of lysostaphin resistance in oxacillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 45:1431–1437PubMedCrossRefGoogle Scholar
  14. 14.
    Gründling A, Missiakas DM, Schneewind O (2006) Staphylococcus aureus mutants with increased lysostaphin resistance. J Bacteriol 188:6286–6297PubMedCrossRefGoogle Scholar
  15. 15.
    Polak J, Latta PD, Blackburn P (1993) In vitro activity of recombinant lysostaphin-antibiotic combinations toward methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 17:265–270PubMedCrossRefGoogle Scholar
  16. 16.
    Climo MW, Patron RL, Goldstein BP, Archer GL (1998) Lysostaphin treatment of experimental methicillin-resistant Staphylococcus aureus aortic valve endocarditis. Antimicrob Agents Chemother 42:1355–1360PubMedGoogle Scholar
  17. 17.
    Kiri N, Archer G, Climo MW (2002) Combinations of lysostaphin with β-lactams are synergistic against oxacillin-resistant Staphylococcus epidermidis. Antimicrob Agents Chemother 46:2017–2020PubMedCrossRefGoogle Scholar
  18. 18.
    Walencka E, Sadowska B, Różalska S, Hryniewicz W, Różalska B (2006) Staphylococcus aureus biofilm as a target for single or repeated doses of oxacillin, vancomycin, linezolid and/or lysostaphin. Folia Microbiol 51:381–386CrossRefGoogle Scholar
  19. 19.
    Graham S, Coote PJ (2007) Potent, synergistic inhibition of Staphylococcus aureus upon exposure to a combination of the endopeptidase lysostaphin and the cationic peptide ranalexin. J Antimicrob Chemother 59:759–762PubMedCrossRefGoogle Scholar
  20. 20.
    Kokai-Kun JF, Chanturiya T, Mond JJ (2009) Lysostaphin eradicates established Staphylococcus aureus biofilms in jugular vein catheterized mice. J Antimicrob Chemother 64:94–100PubMedCrossRefGoogle Scholar
  21. 21.
    Cisani G, Varaldo PE, Grazi G, Soro O (1982) High-level potentiation of lysostaphin anti-staphylococcal activity by lysozyme. Antimicrob Agents Chemother 21:531–535PubMedGoogle Scholar
  22. 22.
    Becker SC, Foster-Frey J, Donovan DM (2008) The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA. FEMS Microbiol Lett 287:185–191PubMedCrossRefGoogle Scholar
  23. 23.
    Walsh SM, Shah AG, Mond JJ (2004) Topical anti-infective formulations. US Patent publication no. US 2004/0192581 A1Google Scholar
  24. 24.
    Hancock REW (1997) Peptide antibiotics. Lancet 349:418–422PubMedCrossRefGoogle Scholar
  25. 25.
    Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55PubMedCrossRefGoogle Scholar
  26. 26.
    Marr AK, Gooderham WJ, Hancock REW (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472PubMedCrossRefGoogle Scholar
  27. 27.
    Perron GG, Zasloff M, Bell G (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc R Soc B 273:251–256PubMedCrossRefGoogle Scholar
  28. 28.
    Desbois AP, Lang S, Gemmell CG, Coote PJ (2010) Surface disinfection properties of the combination of an antimicrobial peptide, ranalexin, with an endopeptidase, lysostaphin, against methicillin-resistant Staphylococcus aureus (MRSA). J Appl Microbiol 108:723–730PubMedCrossRefGoogle Scholar
  29. 29.
    PE, Tweedie JW (1990) cDNA and protein sequence of bovine lactoferrin. Nucl Acids Res 18:7167PubMedCrossRefGoogle Scholar
  30. 30.
    White RL, Burgess DS, Mandura M, Bosso JA (1996) Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. Antimicrob Agents Chemother 40:1914–1918PubMedGoogle Scholar
  31. 31.
    Francius G, Domenech O, Mingeot-Leclercq MP, Dufrêne YF (2008) Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J Bacteriol 190:7904–7909PubMedCrossRefGoogle Scholar
  32. 32.
    Scholar EM, Pratt WB (2000) Antibiotics that affect membrane permeability. In: Scholar EM, Pratt WB (eds) The antimicrobial drugs, 2nd edn. Oxford University Press, New York, pp 234–241Google Scholar
  33. 33.
    Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. Biochim Biophys Acta 1758:1529–1539PubMedCrossRefGoogle Scholar
  34. 34.
    Moraes LGM, Fázio M, Vieira RFF, Nakaie CR, Miranda MTM, Schreier S, Daffre S, Miranda A (2007) Conformational and functional studies of gomesin analogues by CD, EPR and fluorescence spectroscopies. Biochim Biophys Acta 1768:52–58PubMedCrossRefGoogle Scholar
  35. 35.
    Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501PubMedCrossRefGoogle Scholar
  36. 36.
    Gottler L, Ramamoorthy A (2009) Membrane orientation, mechanism, and function of pexiganan—a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta 1788:1680–1686PubMedCrossRefGoogle Scholar
  37. 37.
    Robbel L, Marahiel MA (2010) Daptomycin, a bacterial lipopeptide synthesized by a nonribosomal machinery. J Biol Chem 285:27501–27508PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Biomedical Sciences Research Complex, School of Biology, The North HaughUniversity of St AndrewsFifeUK

Personalised recommendations