Advertisement

In vitro activity of beta-lactam antibiotics against CTX-M-producing Escherichia coli

  • M. Tärnberg
  • Å. Östholm-Balkhed
  • H.-J. Monstein
  • A. Hällgren
  • H. Hanberger
  • L. E. Nilsson
Article

Abstract

Beta-lactam antibiotics have been discussed as options for the treatment of infections caused by multiresistant extended-spectrum beta-lactamase (ESBL)-producing bacteria if the minimum inhibitory concentration (MIC) is low. The objective of this study was to investigate the in vitro activity of different beta-lactam antibiotics against CTX-M-producing Escherichia coli. A total of 198 isolates of E. coli with the ESBL phenotype were studied. Polymerase chain reaction (PCR) amplification of CTX-M genes and amplicon sequencing were performed. The MICs for amoxicillin–clavulanic acid, aztreonam, cefepime, cefotaxime, ceftazidime, ceftibuten, ertapenem, imipenem, mecillinam, meropenem, piperacillin–tazobactam, and temocillin were determined with the Etest. Susceptibility was defined according to the breakpoints of the European Committee on Antimicrobial Susceptibility Testing (EUCAST). MIC50 and MIC90 values were calculated. Isolates from CTX-M group 9 showed higher susceptibility to the beta-lactam antibiotics tested than isolates belonging to CTX-M group 1. More than 90% of the isolates belonging to CTX-M group 9 were susceptible to amoxicillin–clavulanic acid, ceftazidime, ceftibuten, piperacillin–tazobactam, and temocillin. The susceptibility was high to mecillinam, being 91%, regardless of the CTX-M group. All isolates were susceptible to imipenem and meropenem, and 99% to ertapenem. This study shows significant differences in susceptibility to different beta-lactam antibiotics among the CTX-M-producing E. coli isolates and a significant difference for many antibiotics tested between the CTX-M-producing groups 1 and 9. The good in vitro activity of other beta-lactam antibiotics compared to carbapenems indicate that clinical studies are warranted in order to examine the potential role of these beta-lactam antibiotics in the treatment of infections caused by multiresistant ESBL-producing E. coli.

Keywords

Minimum Inhibitory Concentration Piperacillin Clavulanic Acid Aztreonam Ertapenem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Funding

This work was supported by the Medical Research Council of Southeast Sweden.

Transparency declaration

Nothing to declare.

Author contributions

MT, ÅÖB, H-JM, AH, HH, and LEN participated in the conception, design, and drafting of the manuscript, and final approval of the version to be published. MT was responsible for the laboratory work, analysis, statistical calculations, and interpretations. MT, ÅÖB, and LEN were responsible for the clinical strain collection.

References

  1. 1.
    Alsterlund R, Carlsson B, Gezelius L et al (2009) Multiresistant CTX-M-15 ESBL-producing Escherichia coli in southern Sweden: description of an outbreak. Scand J Infect Dis 41(6–7):410–415PubMedCrossRefGoogle Scholar
  2. 2.
    Fang H, Ataker F, Hedin G et al (2008) Molecular epidemiology of extended-spectrum beta-lactamases among Escherichia coli isolates collected in a Swedish hospital and its associated health care facilities from 2001 to 2006. J Clin Microbiol 46(2):707–712PubMedCrossRefGoogle Scholar
  3. 3.
    Kjerulf A, Hansen DS, Sandvang D et al (2008) The prevalence of ESBL-producing E. coli and Klebsiella strains in the Copenhagen area of Denmark. APMIS 116(2):118–124PubMedCrossRefGoogle Scholar
  4. 4.
    Lytsy B, Sandegren L, Tano E et al (2008) The first major extended-spectrum beta-lactamase outbreak in Scandinavia was caused by clonal spread of a multiresistant Klebsiella pneumoniae producing CTX-M-15. APMIS 116(4):302–308PubMedCrossRefGoogle Scholar
  5. 5.
    Naseer U, Natås OB, Haldorsen BC et al (2007) Nosocomial outbreak of CTX-M-15-producing E. coli in Norway. APMIS 115(2):120–126PubMedCrossRefGoogle Scholar
  6. 6.
    Nyberg SD, Osterblad M, Hakanen AJ et al (2007) Detection and molecular genetics of extended-spectrum beta-lactamases among cefuroxime-resistant Escherichia coli and Klebsiella spp. isolates from Finland, 2002–2004. Scand J Infect Dis 39(5):417–424PubMedCrossRefGoogle Scholar
  7. 7.
    Jacoby G, Bush K.OXA-type β-lactamases. Available online at: http://www.lahey.org/Studies/other.asp#table1. Last date accessed 9 August 2010
  8. 8.
    Bonnet R (2004) Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48(1):1–14PubMedCrossRefGoogle Scholar
  9. 9.
    European Antimicrobial Resistance Surveillance System (EARSS) (2005) EARSS manual 2005. Available online at: http://www1.szu.cz/cem/earss/docs/Earss_manual_2005.pdf. Last date accessed 2 February 2011
  10. 10.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2008) Expert rules in antimicrobial susceptibility testing. Available online at: http://www.srga.org/eucastwt/EUCAST%20Expert%20rules%20final%20April_20080407.pdf. Last date accessed 9 August 2010
  11. 11.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2008) Expert rules. Home page at: http://www.eucast.org/expert_rules/. Last date accessed 9 August 2010
  12. 12.
    Melzer M, Petersen I (2007) Mortality following bacteraemic infection caused by extended spectrum beta-lactamase (ESBL) producing E. coli compared to non-ESBL producing E. coli. J Infect 55(3):254–259PubMedCrossRefGoogle Scholar
  13. 13.
    Schwaber MJ, Carmeli Y (2007) Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother 60(5):913–920PubMedCrossRefGoogle Scholar
  14. 14.
    Cordery RJ, Roberts CH, Cooper SJ et al (2008) Evaluation of risk factors for the acquisition of bloodstream infections with extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species in the intensive care unit; antibiotic management and clinical outcome. J Hosp Infect 68(2):108–115PubMedCrossRefGoogle Scholar
  15. 15.
    Gudiol C, Calatayud L, Garcia-Vidal C et al (2010) Bacteraemia due to extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) in cancer patients: clinical features, risk factors, molecular epidemiology and outcome. J Antimicrob Chemother 65(2):333–341PubMedCrossRefGoogle Scholar
  16. 16.
    Ortega M, Marco F, Soriano A et al (2009) Analysis of 4758 Escherichia coli bacteraemia episodes: predictive factors for isolation of an antibiotic-resistant strain and their impact on the outcome. J Antimicrob Chemother 63(3):568–574PubMedCrossRefGoogle Scholar
  17. 17.
    Rodríguez-Baño J, Navarro MD, Romero L et al (2006) Bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis 43(11):1407–1414PubMedCrossRefGoogle Scholar
  18. 18.
    Tumbarello M, Sanguinetti M, Montuori E et al (2007) Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 51(6):1987–1994PubMedCrossRefGoogle Scholar
  19. 19.
    Tumbarello M, Sali M, Trecarichi EM et al (2008) Bloodstream infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli: risk factors for inadequate initial antimicrobial therapy. Antimicrob Agents Chemother 52(9):3244–3252PubMedCrossRefGoogle Scholar
  20. 20.
    Song KH, Jeon JH, Park WB et al (2009) Clinical outcomes of spontaneous bacterial peritonitis due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species: a retrospective matched case–control study. BMC Infect Dis 9:41PubMedCrossRefGoogle Scholar
  21. 21.
    Bin C, Hui W, Renyuan Z et al (2006) Outcome of cephalosporin treatment of bacteremia due to CTX-M-type extended-spectrum beta-lactamase-producing Escherichia coli. Diagn Microbiol Infect Dis 56(4):351–357PubMedCrossRefGoogle Scholar
  22. 22.
    Lagacé-Wiens PR, Nichol KA, Nicolle LE et al (2006) Treatment of lower urinary tract infection caused by multidrug-resistant extended-spectrum-beta-lactamase-producing Escherichia coli with amoxicillin/clavulanate: case report and characterization of the isolate. J Antimicrob Chemother 57(6):1262–1263PubMedCrossRefGoogle Scholar
  23. 23.
    Nicolle LE, Mulvey MR (2007) Successful treatment of ctx-m ESBL producing Escherichia coli relapsing pyelonephritis with long term pivmecillinam. Scand J Infect Dis 39(8):748–749PubMedCrossRefGoogle Scholar
  24. 24.
    Rodríguez-Baño J, Alcalá JC, Cisneros JM et al (2008) Community infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. Arch Intern Med 168(17):1897–1902PubMedCrossRefGoogle Scholar
  25. 25.
    Gupta ND, Smith RE, Balakrishnan I (2009) Clinical efficacy of temocillin. J Antimicrob Chemother 64(2):431–433PubMedCrossRefGoogle Scholar
  26. 26.
    Monstein HJ, Tärnberg M, Nilsson LE (2009) Molecular identification of CTX-M and blaOXY/K1 beta-lactamase genes in Enterobacteriaceae by sequencing of universal M13-sequence tagged PCR-amplicons. BMC Infect Dis 9:7PubMedCrossRefGoogle Scholar
  27. 27.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2010) Breakpoint tables for interpretation of MICs and zone diameters. Available online at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/EUCAST_breakpoints_v1.1.pdf. Last date accessed 9 August 2010
  28. 28.
    British Society for Antimicrobial Chemotherapy (BSAC) (2010) BSAC methods for antimicrobial susceptibility testing. Available online at: http://www.bsac.org.uk/Resources/BSAC/Version_9.1_March_2010_final.pdf. Last date accessed 2 February 2011
  29. 29.
    Livermore DM, Hope R, Mushtaq S et al. (2008) Orthodox and unorthodox clavulanate combinations against extended-spectrum beta-lactamase producers. Clin Microbiol Infect 14(Suppl 1):189–193PubMedCrossRefGoogle Scholar
  30. 30.
    Rodriguez-Villalobos H, Malaviolle V, Frankard J et al (2006) In vitro activity of temocillin against extended spectrum beta-lactamase-producing Escherichia coli. J Antimicrob Chemother 57(4):771–774PubMedCrossRefGoogle Scholar
  31. 31.
    Tofteland S, Haldorsen B, Dahl KH et al (2007) Effects of phenotype and genotype on methods for detection of extended-spectrum-beta-lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway. J Clin Microbiol 45(1):199–205PubMedCrossRefGoogle Scholar
  32. 32.
    Liao CH, Sheng WH, Wang JT et al (2006) In vitro activities of 16 antimicrobial agents against clinical isolates of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in two regional hospitals in Taiwan. J Microbiol Immunol Infect 39(1):59–66PubMedGoogle Scholar
  33. 33.
    Thomas K, Weinbren MJ, Warner M et al (2006) Activity of mecillinam against ESBL producers in vitro. J Antimicrob Chemother 57(2):367–368PubMedCrossRefGoogle Scholar
  34. 34.
    Livermore DM, Hope R, Fagan EJ et al (2006) Activity of temocillin against prevalent ESBL- and AmpC-producing Enterobacteriaceae from south-east England. J Antimicrob Chemother 57(5):1012–1014PubMedCrossRefGoogle Scholar
  35. 35.
    Sorlózano A, Gutiérrez J, Romero JM et al (2007) Activity in vitro of twelve antibiotics against clinical isolates of extended-spectrum beta-lactamase producing Escherichia coli. J Basic Microbiol 47(5):413–416PubMedCrossRefGoogle Scholar
  36. 36.
    Hoban DJ, Bouchillon SK, Johnson BM et al (2005) In vitro activity of tigecycline against 6792 Gram-negative and Gram-positive clinical isolates from the global Tigecycline Evaluation and Surveillance Trial (TEST Program, 2004). Diagn Microbiol Infect Dis 52(3):215–227PubMedCrossRefGoogle Scholar
  37. 37.
    Oteo J, Navarro C, Cercenado E et al (2006) Spread of Escherichia coli strains with high-level cefotaxime and ceftazidime resistance between the community, long-term care facilities, and hospital institutions. J Clin Microbiol 44(7):2359–2366PubMedCrossRefGoogle Scholar
  38. 38.
    Prakash V, Lewis JS 2nd, Herrera ML et al (2009) Oral and parenteral therapeutic options for outpatient urinary infections caused by enterobacteriaceae producing CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Chemother 53(3):1278–1280PubMedCrossRefGoogle Scholar
  39. 39.
    Colodner R, Samra Z, Keller N et al (2007) First national surveillance of susceptibility of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. to antimicrobials in Israel. Diagn Microbiol Infect Dis 57(2):201–205PubMedCrossRefGoogle Scholar
  40. 40.
    Sader HS, Hsiung A, Fritsche TR et al (2007) Comparative activities of cefepime and piperacillin/tazobactam tested against a global collection of Escherichia coli and Klebsiella spp. with an ESBL phenotype. Diagn Microbiol Infect Dis 57(3):341–344PubMedCrossRefGoogle Scholar
  41. 41.
    Gavin PJ, Suseno MT, Thomson RB Jr et al (2006) Clinical correlation of the CLSI susceptibility breakpoint for piperacillin–tazobactam against extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella species. Antimicrob Agents Chemother 50(6):2244–2247PubMedCrossRefGoogle Scholar
  42. 42.
    Peterson LR (2008) Antibiotic policy and prescribing strategies for therapy of extended-spectrum beta-lactamase-producing Enterobacteriaceae: the role of piperacillin–tazobactam. Clin Microbiol Infect 14(Suppl 1):181–184PubMedCrossRefGoogle Scholar
  43. 43.
    Hernández JR, Velasco C, Romero L et al (2006) Comparative in vitro activity of ertapenem against extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolated in Spain. Int J Antimicrob Agents 28(5):457–459PubMedCrossRefGoogle Scholar
  44. 44.
    Kiremitci A, Dinleyici EC, Erben N et al (2008) In vitro activity of ertapenem and other carbapenems against extended-spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae clinical isolates in a tertiary care center in Turkey. Expert Opin Pharmacother 9(9):1441–1449PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Tärnberg
    • 1
  • Å. Östholm-Balkhed
    • 1
    • 2
  • H.-J. Monstein
    • 1
    • 3
  • A. Hällgren
    • 1
    • 2
  • H. Hanberger
    • 1
    • 2
  • L. E. Nilsson
    • 1
  1. 1.Department of Clinical and Experimental Medicine, Faculty of Health SciencesLinköping UniversityLinköpingSweden
  2. 2.Department of Infectious DiseasesLinköping University HospitalLinköpingSweden
  3. 3.Department of Clinical MicrobiologyLinköping University HospitalLinköpingSweden

Personalised recommendations