Skip to main content

Advertisement

Log in

Microbial diversity of supra- and subgingival biofilms on freshly colonized titanium implant abutments in the human mouth

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Supra- and subgingival biofilm formation is considered to be mainly responsible for early implant failure caused by inflammations of periimplant tissues. Nevertheless, little is known about the complex microbial diversity and interindividual similarities around dental implants. An atraumatic assessment was made of the diversity of microbial communities around titanium implants by single strand conformation polymorphism (SSCP) analysis of the 16S rRNA gene amplicons as well as subsequent sequence analysis. Samples of adherent supra- and subgingival periimplant biofilms were collected from ten patients. Additionally, samples of sulcusfluid were taken at titanium implant abutments and remaining teeth. The bacteria in the samples were characterized by SSCP and sequence analysis. A high diversity of bacteria varying between patients and within one patient at different locations was found. Bacteria characteristic for sulcusfluid and supra- and subgingival biofilm communities were identified. Sulcusfluid of the abutments showed higher abundance of Streptococcus species than from residual teeth. Prevotella and Rothia species frequently reported from the oral cavity were not detected at the abutments suggesting a role as late colonizers. Different niches in the human mouth are characterized by specific groups of bacteria. Implant abutments are a very valuable approach to study dental biofilm development in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Slots J (1977) The predominant cultivable microflora of advanced periodontitis. Scand J Dent Res 85:114–121

    CAS  PubMed  Google Scholar 

  2. Loe H, Theilade E, Jensen SB (1965) Experimental gingivitis in man. J Periodontol 36:177–187

    Article  CAS  PubMed  Google Scholar 

  3. Quirynen M, Vogels R (2002) Clinical relevance of surface characteristics on the formation of plaque on teeth and implants. Ned Tijdschr Tandheelkd 109:422–429

    CAS  PubMed  Google Scholar 

  4. Hannig M (1997) Transmission electron microscopic study of in vivo pellicle formation on dental restorative materials. Eur J Oral Sci 105:422–433

    CAS  PubMed  Google Scholar 

  5. Slots J (1977) Microflora in the healthy gingival sulcus in man. Scand J Dent Res 85:247–254

    CAS  PubMed  Google Scholar 

  6. Berglundh T, Lindhe J, Ericsson I, Liljenberg B (1992) Enhanced gingivitis in the deciduous and permanent dentition. An experimental study in the dog. J Clin Periodontol 19:135–142

    Article  CAS  PubMed  Google Scholar 

  7. Berglundh T, Lindhe J, Marinello C, Ericsson I, Liljenberg B (1992) Soft tissue reaction to de novo plaque formation on implants and teeth. An experimental study in the dog. Clin Oral Implants Res 3:1–8

    Article  CAS  PubMed  Google Scholar 

  8. Leonhardt A, Berglundh T, Ericsson I, Dahlen G (1992) Putative periodontal pathogens on titanium implants and teeth in experimental gingivitis and periodontitis in Beagle dogs. Clin Oral Implants Res 3:112–119

    Article  CAS  PubMed  Google Scholar 

  9. Ericsson I, Berglundh T, Marinello C, Liljenberg B, Lindhe J (1992) Long-standing plaque and gingivitis at implants and teeth in the dog. Clin Oral Implants Res 3:99–103

    Article  CAS  PubMed  Google Scholar 

  10. Abrahamsson I, Berglundh T, Lindhe J (1998) Soft tissue response to plaque formation at different implant systems. A comparative study in the dog. Clin Oral Implants Res 9:73–79, Erratum 9:281

    Article  CAS  PubMed  Google Scholar 

  11. Lau L, Sanz M, Herrera D, Morillo JM, Martin C, Silva A (2004) Quantitative real-time polymerase chain reaction versus culture: a comparison between two methods for the detection and quantification of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythensis in subgingival plaque samples. J Clin Periodontol 31:1061–1069

    Article  CAS  PubMed  Google Scholar 

  12. Slots J, Rams TE (1991) New views on periodontal microbiota in special patient categories. J Clin Periodontol 18:411–420

    Article  CAS  PubMed  Google Scholar 

  13. Socransky SS, Haffajee AD (1992) The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 63:322–331

    Article  CAS  PubMed  Google Scholar 

  14. Wolff L, Dahlen G, Aeppli D (1994) Bacteria as risk markers for periodontitis. J Periodontol 65:498–510

    CAS  PubMed  Google Scholar 

  15. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144

    Article  CAS  PubMed  Google Scholar 

  16. Li Y, Ku CY, Xu J, Saxena D, Caufield PW (2005) Survey of oral microbial diversity using PCR-based denaturing gradient gel electrophoresis. J Dent Res 84:559–564

    Article  CAS  PubMed  Google Scholar 

  17. Kroes I, Lepp PW, Relman DA (1999) Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci USA 96:14547–14552

    Article  CAS  PubMed  Google Scholar 

  18. Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  PubMed  Google Scholar 

  19. Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83, Erratum 198:217

    Article  CAS  PubMed  Google Scholar 

  20. Cochrane GR, Galperin MY (2010) Nucleic aids research database issue and online database collection: a community of data resources. Nucleic Acids Res 38:D1–4

    Article  CAS  PubMed  Google Scholar 

  21. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008) GenBank. Nucleic Acids Res 36:D25–30

    Article  CAS  PubMed  Google Scholar 

  22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  Google Scholar 

  23. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306

    Article  CAS  PubMed  Google Scholar 

  24. Sneath PHA (1992) International code of nomenclature of bacteria: bacteriological code, 1990 revision. ASM Press, Washington, DC

  25. De Boever AL, De Boever JA (2006) Early colonization of non-submerged dental implants in patients with a history of advanced aggressive periodontitis. Clin Oral Implants Res 17:8–17

    Article  PubMed  Google Scholar 

  26. Elter C, Heuer W, Demling A, Hannig M, Heidenblut T, Bach FW, Stiesch-Scholz M (2008) Supra- and subgingival biofilm formation on implant abutments with different surface characteristics. Int J Oral Maxillofac Implants 23:327–334

    PubMed  Google Scholar 

  27. Heuer W, Elter C, Demling A, Neumann A, Suerbaum S, Hannig M, Heidenblut T, Bach FW, Stiesch-Scholz M (2007) Analysis of early biofilm formation on oral implants in man. J Oral Rehabil 34:377–382

    Article  CAS  PubMed  Google Scholar 

  28. Marchandin H, Teyssier C, Simeon De Buochberg M, Jean-Pierre H, Carriere C, Jumas-Bilak E (2003) Intra-chromosomal heterogeneity between the four 16S rRNA gene copies in the genus Veillonella: implications for phylogeny and taxonomy. Microbiology 149:1493–1501

    Article  CAS  PubMed  Google Scholar 

  29. Beighton D (2005) The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 33:248–255

    Article  PubMed  Google Scholar 

  30. Willcox MD, Drucker DB, Green RM (1987) Relative cariogenicity and in-vivo plaque-forming ability of the bacterium Streptococcus oralis in gnotobiotic WAG/RIJ rats. Arch Oral Biol 32:455–457

    Article  CAS  PubMed  Google Scholar 

  31. Hughes CV, Andersen RN, Kolenbrander PE (1992) Characterization of Veillonella atypica PK1910 adhesin-mediated coaggregation with oral Streptococcus spp. Infect Immun 60:1178–1186

    CAS  PubMed  Google Scholar 

  32. Mikx FH, van der Hoeven JS (1975) Symbiosis of Streptococcus mutans and Veillonella alcalescens in mixed continuous cultures. Arch Oral Biol 20:407–410

    Article  CAS  PubMed  Google Scholar 

  33. Suchett-Kaye G, Decoret D, Barsotti O (1998) Clonal analysis by ribotyping of Fusobacterium nucleatum isolates obtained from healthy young adults with optimal plaque control. J Periodontal Res 33:179–186

    Article  CAS  PubMed  Google Scholar 

  34. Periasamy S, Kolenbrander PE (2010) Central role of early colonizer Veillonella sp. in establishing multispecies biofilm communities with initial, middle and late colonizers of enamel. J Bacteriol 192(12):2965–2972 doi:10.1128/JB.01631-09

    Google Scholar 

  35. Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL, Palmer RJ Jr, Kolenbrander PE (2006) Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 72:2837–2848

    Article  CAS  PubMed  Google Scholar 

  36. Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40:1001–1009

    Article  CAS  PubMed  Google Scholar 

  37. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levanos VA, Sahasrabudhe A, Dewhirst FE (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783

    Article  CAS  PubMed  Google Scholar 

  38. Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF, Nelson KE, Gill SR, Fraser-Logget CM, Relman DA (2010) Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4(8):962–974

    Google Scholar 

  39. Zaura E, Keijser BJ, Huse SM, Crielaard W (2009) Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259

    Article  PubMed  Google Scholar 

  40. Zijnge V, Harmsen HJ, Kleinfelder JW, van der Rest ME, Degener JE, Welling GW (2003) Denaturing gradient gel electrophoresis analysis to study bacterial community structure in pockets of periodontitis patients. Oral Microbiol Immunol 18:59–65

    Article  CAS  PubMed  Google Scholar 

  41. Scannapieco FA (1999) Role of oral bacteria in respiratory infection. J Periodontol 70:793–802

    Article  CAS  PubMed  Google Scholar 

  42. Paster BJ, Olsen I, Aas JA, Dewhirst FE (2000) The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 42:80–87

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Jennifer Knaak for her excellent technical assistance. This work was supported by a grant from the German Federal Ministry for Science, Education and Research (Project No. 01 KI 07 96) and by the German Research Foundation (DFG-SFB Collaborative Research Center 599).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. R. Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuer, W., Stiesch, M. & Abraham, W.R. Microbial diversity of supra- and subgingival biofilms on freshly colonized titanium implant abutments in the human mouth. Eur J Clin Microbiol Infect Dis 30, 193–200 (2011). https://doi.org/10.1007/s10096-010-1068-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-010-1068-y

Keywords

Navigation