Skip to main content
Log in

Molecular typing of Mycobacterium tuberculosis circulated in Moscow, Russian Federation

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The present study investigates epidemiological diversity and multidrug resistance spreading among Mycobacterium tuberculosis strains circulating in Moscow, Russian Federation. Among 115 M. tuberculosis strains selected randomly from the sputum of epidemiologically unrelated tuberculosis (TB) patients, multidrug-resistant (MDR) strains predominated. Mutations in the RRDR of the rpoB gene were detected in 64 (83.1%) of 77 rifampicin (RIF)-resistant strains. The Ser531→Leu substitution was prevalent among them (76.5%). Aberrations in the Ser315 codon of katG and/or in the inhA promoter region were found in 79 (84.0%) of 94 isoniazid (INH)-resistant strains. Strains belonging to the Beijing family prevailed. Seventy-one different patterns were identified using the 24-VNTR loci typing scheme. Three main 24-loci VNTR clusters included 34 strains which belonged to the Beijing family. The spoligotyping and 24-loci VNTR typing combination demonstrated maximal discriminatory power. Among the Beijing strains, the MDR phenotype was revealed more frequently than among the others. High genetic heterogeneity of the studied population was shown by the assessment of VNTR loci variability in the analyzed group and in the strains from other parts of Russia. Comparison of the 24-VNTR locus typing and spoligotyping data with revealed resistance-associated mutation allows us to make a suggestion that the active transmission of MDR strains and the independent appearance of drug resistance during chemotherapy occurred in the studied population simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization (WHO) (2008) Anti-tuberculosis drug resistance in the world. Fourth global report. WHO, Geneva

    Google Scholar 

  2. Supply P, Allix C, Lesjean S, Cardoso-Oelemann M, Rüsch-Gerdes S, Willery E, Savine E, de Haas P, van Deutekom H, Roring S, Bifani P, Kurepina N, Kreiswirth B, Sola C, Rastogi N, Vatin V, Gutierrez MC, Fauville M, Niemann S, Skuce R, Kremer K, Locht C, van Soolingen D (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510

    Article  CAS  PubMed  Google Scholar 

  3. Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, van Embden J (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914

    CAS  PubMed  Google Scholar 

  4. Ikryannikova LN, Afanas’ev MV, Akopian TA, Il’ina EN, Kuz’min AV, Larionova EE, Smirnova TG, Chernousova LN, Govorun VM (2007) Mass-spectrometry based minisequencing method for the rapid detection of drug resistance in Mycobacterium tuberculosis. J Microbiol Methods 70(3):395–405

    Article  CAS  PubMed  Google Scholar 

  5. Afanas’ev MV, Ikryannikova LN, Il’ina EN, Sidorenko SV, Kuz’min AV, Larionova EE, Smirnova TG, Chernousova LN, Kamaev EY, Skorniakov SN, Kinsht VN, Cherednichenko AG, Govorun VM (2007) Molecular characteristics of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis isolates from the Russian Federation. J Antimicrob Chemother 59(6):1057–1064

    Article  PubMed  Google Scholar 

  6. World Health Organization (WHO) (1998) Laboratory services in tuberculosis control. Part III: culture. WHO, Geneva

    Google Scholar 

  7. Boom R, Sol CJ, Salimans MM, Jansen CL, Wertheim-van Dillen PM, van der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    CAS  PubMed  Google Scholar 

  8. Supply P, Lesjean S, Savine E, Kremer K, van Soolingen D, Locht C (2001) Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 39:3563–3571

    Article  CAS  PubMed  Google Scholar 

  9. Frothingham R, Meeker-O’Connell WA (1998) Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144:1189–1196

    Article  CAS  PubMed  Google Scholar 

  10. Le Flèche P, Fabre M, Denoeud F, Koeck J-L, Vergnaud G (2002) High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol 2:37

    Article  PubMed  Google Scholar 

  11. Skuce RA, McCorry TP, McCarroll JF, Roring SM, Scott AN, Brittain D, Hughes SL, Hewinson RG, Neill SD (2002) Discrimination of Mycobacterium tuberculosis complex bacteria using novel VNTR-PCR targets. Microbiology 148:519–528

    CAS  PubMed  Google Scholar 

  12. Roring S, Scott A, Brittain D, Walker I, Hewinson G, Neill S, Skuce R (2002) Development of variable-number tandem repeat typing of Mycobacterium bovis: comparison of results with those obtained by using existing exact tandem repeats and spoligotyping. J Clin Microbiol 40:2126–2133

    Article  CAS  PubMed  Google Scholar 

  13. Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, Allix C, Aristimuño L, Arora J, Baumanis V, Binder L, Cafrune P, Cataldi A, Cheong S, Diel R, Ellermeier C, Evans JT, Fauville-Dufaux M, Ferdinand S, Garcia de Viedma D, Garzelli C, Gazzola L, Gomes HM, Guttierez MC, Hawkey PM, van Helden PD, Kadival GV, Kreiswirth BN, Kremer K, Kubin M, Kulkarni SP, Liens B, Lillebaek T, Ho ML, Martin C, Martin C, Mokrousov I, Narvskaïa O, Ngeow YF, Naumann L, Niemann S, Parwati I, Rahim Z, Rasolofo-Razanamparany V, Rasolonavalona T, Rossetti ML, Rüsch-Gerdes S, Sajduda A, Samper S, Shemyakin IG, Singh UB, Somoskovi A, Skuce RA, van Soolingen D, Streicher EM, Suffys PN, Tortoli E, Tracevska T, Vincent V, Victor TC, Warren RM, Yap SF, Zaman K, Portaels F, Rastogi N, Sola C (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6:23

    Article  PubMed  Google Scholar 

  14. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26(11):2465–2466

    CAS  PubMed  Google Scholar 

  15. Allix-Béguec C, Harmsen D, Weniger T, Supply P, Niemann S (2008) Evaluation and strategy for use of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol 46:2692–2699

    Article  PubMed  Google Scholar 

  16. Federal Center of Hygiene and Epidemiology (2008) About sanitary-and-epidemiologic situation in Russian Federation in 2007: public report. Russian Federation, Moscow

  17. Kovalev SY, Kamaev EY, Kravchenko MA, Kurepina NE, Skorniakov SN (2005) Genetic analysis of Mycobacterium tuberculosis strains isolated in Ural region, Russian Federation, by MIRU-VNTR genotyping. Int J Tuberc Lung Dis 9(7):746–752

    CAS  PubMed  Google Scholar 

  18. Mokrousov I, Otten T, Zozio T, Turkin E, Nazemtseva V, Sheremet A, Vishnevsky B, Narvskaya O, Rastogi N (2009) At Baltic crossroads: a molecular snapshot of Mycobacterium tuberculosis population diversity in Kaliningrad, Russia. FEMS Immun Med Microbiol 55(1):13–22

    Article  CAS  Google Scholar 

  19. Lipin MY, Stepanshina VN, Shemyakin IG, Shinnick TM (2007) Association of specific mutations in katG, rpoB, rpsL and rrs genes with spoligotypes of multidrug-resistant Mycobacterium tuberculosis isolates in Russia. Clin Microbiol Infect 13(6):620–626

    Article  CAS  PubMed  Google Scholar 

  20. Medvedeva TV, Ogarkov OB, Nekipelov OM, Ushakov IV, Koz’iakova ES, Skvortsova RG (2004) MIRU-VNTR genotyping of Mycobacterium tuberculosis strains from East Siberian: Beijing family versus Kilimanjaro family. Mol Gen Mikrobiol Virusol 4:33–38

    PubMed  Google Scholar 

  21. Glynn JR, Whiteley J, Bifani PJ, Kremer K, van Soolingen D (2002) Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: a systematic review. Emerg Infect Dis 8(8):843–849

    PubMed  Google Scholar 

  22. Krüüner A, Hoffner SE, Sillastu H, Danilovits M, Levina K, Svenson SB, Ghebremichael S, Koivula T, Källenius G (2001) Spread of drug-resistant pulmonary tuberculosis in Estonia. J Clin Microbiol 39:3339–3345

    Article  PubMed  Google Scholar 

  23. van Crevel R, Nelwan RHH, de Lenne W, Veeraragu Y, van der Zanden AG, Amin Z, van der Meer JW, van Soolingen D (2001) Mycobacterium tuberculosis Beijing genotype strains associated with febrile response to treatment. Emerg Infect Dis 7:880–883

    Article  PubMed  Google Scholar 

  24. López B, Aguilar D, Orozco H, Burger M, Espitia C, Ritacco V, Barrera L, Kremer K, Hernandez-Pando R, Huygen K, van Soolingen D (2003) A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin Exp Immunol 133:30–37

    Article  PubMed  Google Scholar 

  25. Shemiakin IG, Stepanshina VN, Korobova OV, Anisimova VA, Ivanov IIu, Lipin MIu, Lazarev AA, Skaldina AI, Chernavskaia LA, Tarasova TI (2002) Genetic typing of Mycobacterium tuberculosis strains by spoligotyping and genome fingerprinting techniques. Zh Mikrobiol Epidemiol Immunobiol 6:30–35

    PubMed  Google Scholar 

  26. Drobniewski F, Balabanova Y, Nikolayevsky V, Ruddy M, Kuznetzov S, Zakharova S, Melentyev A, Fedorin I (2005) Drug-resistant tuberculosis, clinical virulence, and the dominance of the Beijing strain family in Russia. JAMA 293(22):2726–2731

    Article  CAS  PubMed  Google Scholar 

  27. Surikova OV, Voitech DS, Kuzmicheva G, Tatkov SI, Mokrousov IV, Narvskaya OV, Rot MA, van Soolingen D, Filipenko ML (2005) Efficient differentiation of Mycobacterium tuberculosis strains of the W-Beijing family from Russia using highly polymorphic VNTR loci. Eur J Epidemiol 20:963–974

    Article  CAS  PubMed  Google Scholar 

  28. Mokrousov I, Narvskaya O, Limeschenko E, Vyazovaya A, Otten T, Vyshnevskiy B (2004) Analysis of the allelic diversity of the mycobacterial interspersed repetitive units in Mycobacterium tuberculosis strains of the Beijing family: practical implications and evolutionary considerations. J Clin Microbiol 42(6):2438–2444

    Article  CAS  PubMed  Google Scholar 

  29. Nikolayevskyy VV, Brown TJ, Bazhora YI, Asmolov AA, Balabanova YM, Drobniewski FA (2007) Molecular epidemiology and prevalence of mutations conferring rifampicin and isoniazid resistance in Mycobacterium tuberculosis strains from the southern Ukraine. Clin Microbiol Infect 13:129–138

    Article  CAS  PubMed  Google Scholar 

  30. Tracevska T, Jansone I, Baumanis V, Marga O, Lillebaek T (2003) Prevalence of Beijing genotype in Latvian multidrug-resistant Mycobacterium tuberculosis isolates. Int J Tuberc Lung Dis 7:1097–1103

    CAS  PubMed  Google Scholar 

  31. Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN (2006) Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 19:658–685

    Article  CAS  PubMed  Google Scholar 

  32. Mokrousov I, Ly HM, Otten T, Lan NN, Vyshnevskyi B, Hoffner S, Narvskaya O (2005) Origin and primary dispersal of the Mycobacterium tuberculosis Beijing genotype: clues from human phylogeography. Genome Res 15:1357–1364

    Article  CAS  PubMed  Google Scholar 

  33. Mokrousov I, Narvskaya O, Vyazovaya A, Millet J, Otten T, Vishnevsky B, Rastogi N (2008) Mycobacterium tuberculosis Beijing genotype in Russia: in search of informative variable-number tandem-repeat loci. J Clin Microbiol 46:3576–3584

    Article  PubMed  Google Scholar 

  34. Bolotin S, Alexander DC, Chedore P, Drews SJ, Jamieson F (2009) Molecular characterization of drug-resistant Mycobacterium tuberculosis isolates from Ontario, Canada. J Antimicrob Chemother 64(2):263–266

    Article  CAS  PubMed  Google Scholar 

  35. Kourout M, Chaoui I, Sabouni R, Lahlou O, El Mzibri M, Jordaan A, Victor TC, Akrim M, El Aouad R (2009) Molecular characterisation of rifampicin-resistant Mycobacterium tuberculosis strains from Morocco. Int J Tuberc Lung Dis 13(11):1440–1442

    CAS  PubMed  Google Scholar 

  36. Luo T, Zhao M, Li X, Xu P, Gui X, Pickerill S, DeRiemer K, Mei J, Gao Q (2010) Selection of mutations to detect multidrug-resistant Mycobacterium tuberculosis strains in Shanghai, China. Antimicrob Agents Chemother 54(3):1075–1081

    Article  CAS  PubMed  Google Scholar 

  37. Murray M (2002) Sampling bias in the molecular epidemiology of tuberculosis. Emerg Infect Dis 8:363–369

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to V.A. Karpov for the oligonucleotide primers synthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Afanas’ev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(XLS 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afanas’ev, M.V., Ikryannikova, L.N., Il’ina, E.N. et al. Molecular typing of Mycobacterium tuberculosis circulated in Moscow, Russian Federation. Eur J Clin Microbiol Infect Dis 30, 181–191 (2011). https://doi.org/10.1007/s10096-010-1067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-010-1067-z

Keywords

Navigation