Molecular markers for discriminating Streptococcus pyogenes and S. dysgalactiae subspecies equisimilis

  • D. J. McMillan
  • T. Vu
  • P. V. Bramhachari
  • S. Y. Kaul
  • A. Bouvet
  • M. S. Shaila
  • M. G. Karmarkar
  • K. S. Sriprakash


Given the increasing aetiological importance of Streptococcus dysgalactiae subspecies equisimilis in diseases which are primarily attributed to S. pyogenes, molecular markers are essential to distinguish these species and delineate their epidemiology more precisely. Many clinical microbiology laboratories rely on agglutination reactivity and biochemical tests to distinguish them. These methods have limitations which are particularly exacerbated when isolates with mixed properties are encountered. In order to provide additional distinguishing parameters that could be used to unequivocally discriminate these two common pathogens, we assess here three molecular targets: the speB gene, intergenic region upstream of the scpG gene (IRSG) and virPCR. Of these, the former two respectively gave positive and negative results for S. pyogenes, and negative and positive results for S. dysgalactiae subsp. equisimilis. Thus, a concerted use of these nucleic acid-based methods is particularly helpful in epidemiological surveillance to accurately assess the relative contribution of these species to streptococcal infections and diseases.


  1. 1.
    Cunningham MW (2000) Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13(3):470–511CrossRefPubMedGoogle Scholar
  2. 2.
    Carapetis JR, Steer AC, Mulholland EK et al (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5(11):685–694CrossRefPubMedGoogle Scholar
  3. 3.
    Efstratiou A (1997) Pyogenic streptococci of Lancefield groups C and G as pathogens in man. Soc Appl Bacteriol Symp Ser 26:72S–79SPubMedGoogle Scholar
  4. 4.
    Bisno AL, Craven DE, McCabe WR (1987) M proteins of group G streptococci isolated from bacteremic human infections. Infect Immun 55(3):753–757PubMedGoogle Scholar
  5. 5.
    Brandt CM, Haase G, Schnitzler N et al (1999) Characterization of blood culture isolates of Streptococcus dysgalactiae subsp. equisimilis possessing Lancefield’s group A antigen. J Clin Microbiol 37(12):4194–4197PubMedGoogle Scholar
  6. 6.
    Cleary PP, Peterson J, Chen C et al (1991) Virulent human strains of group G streptococci express a C5a peptidase enzyme similar to that produced by group A streptococci. Infect Immun 59(7):2305–2310PubMedGoogle Scholar
  7. 7.
    Geyer A, Schmidt KH (2000) Genetic organisation of the M protein region in human isolates of group C and G streptococci: two types of multigene regulator-like (mgrC) regions. Mol Gen Genet 262(6):965–976CrossRefPubMedGoogle Scholar
  8. 8.
    Kalia A, Bessen DE (2003) Presence of streptococcal pyrogenic exotoxin A and C genes in human isolates of group G streptococci. FEMS Microbiol Lett 219(2):291–295CrossRefPubMedGoogle Scholar
  9. 9.
    Schnitzler N, Podbielski A, Baumgarten G et al (1995) M or M-like protein gene polymorphisms in human group G streptococci. J Clin Microbiol 33(2):356–363PubMedGoogle Scholar
  10. 10.
    Ikebe T, Murayama S, Saitoh K et al (2004) Surveillance of severe invasive group-G streptococcal infections and molecular typing of the isolates in Japan. Epidemiol Infect 132(1):145–149CrossRefPubMedGoogle Scholar
  11. 11.
    Williams GS (2003) Group C and G streptococci infections: emerging challenges. Clin Lab Sci 16(4):209–213PubMedGoogle Scholar
  12. 12.
    Bramhachari PV, Kaul SY, McMillan DJ et al (2009) Disease burden due to Streptococcus dysgalactiae subsp. equisimilis (group G and C streptococci; GGS/GCS) is higher than due to S. pyogenes among Mumbai school children. J Med Microbiol 59:220–223CrossRefPubMedGoogle Scholar
  13. 13.
    Lindbaek M, Høiby EA, Lermark G et al (2005) Clinical symptoms and signs in sore throat patients with large colony variant beta-haemolytic streptococci groups C or G versus group A. Br J Gen Pract 55(517):615–619PubMedGoogle Scholar
  14. 14.
    McDonald M, Towers RJ, Andrews RM et al (2007) Epidemiology of Streptococcus dysgalactiae subsp. equisimilis in tropical communities, Northern Australia. Emerg Infect Dis 13(11):1694–1700PubMedGoogle Scholar
  15. 15.
    Steer AC, Law I, Matatolu L et al (2009) Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis 9(10):611–616CrossRefPubMedGoogle Scholar
  16. 16.
    Brandt CM, Spellerberg B (2009) Human infections due to Streptococcus dysgalactiae subspecies equisimilis. Clin Infect Dis 49(5):766–772CrossRefPubMedGoogle Scholar
  17. 17.
    Broyles RW, Chou AF, Mattachione S et al (2009) The effect of adverse medical events on spending on inpatient care. Qual Manag Health Care 18(4):315–325PubMedGoogle Scholar
  18. 18.
    Takahashi T, Sunaoshi K, Sunakawa K et al (2009) Clinical aspects of invasive infections with Streptococcus dysgalactiae ssp. equisimilis in Japan: differences with respect to Streptococcus pyogenes and Streptococcus agalactiae infections. Clin Microbiol Infect (in press)Google Scholar
  19. 19.
    Facklam RR, Thacker LG, Fox B et al (1982) Presumptive identification of streptococci with a new test system. J Clin Microbiol 15(6):987–990PubMedGoogle Scholar
  20. 20.
    Tanaka D, Isobe J, Watahiki M et al (2008) Genetic features of clinical isolates of Streptococcus dysgalactiae subsp. equisimilis possessing Lancefield’s group A antigen. J Clin Microbiol 46(4):1526–1529CrossRefPubMedGoogle Scholar
  21. 21.
    Facklam R (2002) What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15(4):613–630CrossRefPubMedGoogle Scholar
  22. 22.
    Chen CH, Huang LU, Lee JH et al (1997) Presumptive identification of streptococci by pyrrolidonyl-beta-naphthylamide (PYR) test. Zhonghua Yi Xue Za Zhi (Taipei) 59(4):259–264Google Scholar
  23. 23.
    Wu TC, Williams EC, Conville PS (1987) Rapid identification of group A streptococci by the Strep-A-Fluor system. Diagn Microbiol Infect Dis 6(1):5–9CrossRefPubMedGoogle Scholar
  24. 24.
    Gardiner D, Hartas J, Currie B et al (1995) Vir typing: a long-PCR typing method for group A streptococci. PCR Methods Appl 4(5):288–293PubMedGoogle Scholar
  25. 25.
    Hartas J, Hibble M, Sriprakash KS (1998) Simplification of a locus-specific DNA typing method (Vir typing) for Streptococcus pyogenes. J Clin Microbiol 36(5):1428–1429PubMedGoogle Scholar
  26. 26.
    Beall B, Facklam R, Thompson T (1996) Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. J Clin Microbiol 34(4):953–958PubMedGoogle Scholar
  27. 27.
    Woo PC, Tse H, Chan KM et al (2004) “Streptococcus milleri” endocarditis caused by Streptococcus anginosus. Diagn Microbiol Infect Dis 48(2):81–88CrossRefPubMedGoogle Scholar
  28. 28.
    DelVecchio A, Maley M, Currie BJ et al (2002) NAD-glycohydrolase production and speA and speC distribution in Group A streptococcus (GAS) isolates do not correlate with severe GAS diseases in the Australian population. J Clin Microbiol 40(7):2642–2644CrossRefPubMedGoogle Scholar
  29. 29.
    Tyler SD, Johnson WM, Huang JC et al (1992) Streptococcal erythrogenic toxin genes: detection by polymerase chain reaction and association with disease in strains isolated in Canada from 1940 to 1991. J Clin Microbiol 30(12):3127–3131PubMedGoogle Scholar
  30. 30.
    Davies MR, McMillan DJ, Beiko RG et al (2007) Virulence profiling of Streptococcus dysgalactiae subspecies equisimilis isolated from infected humans reveals 2 distinct genetic lineages that do not segregate with their phenotypes or propensity to cause diseases. Clin Infect Dis 44(11):1442–1454CrossRefPubMedGoogle Scholar
  31. 31.
    Louie L, Simor AE, Louie M et al (1998) Diagnosis of group A streptococcal necrotizing fasciitis by using PCR to amplify the streptococcal pyrogenic exotoxin B gene. J Clin Microbiol 36(6):1769–1771PubMedGoogle Scholar
  32. 32.
    Brandt CM, Schweizer KG, Holland R et al (2005) Lack of mitogenic activity of speG- and speG(dys)-positive Streptococcus dysgalactiae subspecies equisimilis isolates from patients with invasive infections. Int J Med Microbiol 295(8):539–546CrossRefPubMedGoogle Scholar
  33. 33.
    Sriprakash KS, Hartas J (1996) Lateral genetic transfers between group A and G streptococci for M-like genes are ongoing. Microb Pathog 20(5):275–285CrossRefPubMedGoogle Scholar
  34. 34.
    Sriprakash KS, Hartas J (1997) Genetic mosaic upstream of scpG in human group G streptococci contains sequences from group A streptococcal virulence regulon. Adv Exp Med Biol 418:749–751PubMedGoogle Scholar
  35. 35.
    Davies MR, Tran TN, McMillan DJ et al (2005) Inter-species genetic movement may blur the epidemiology of streptococcal diseases in endemic regions. Microbes Infect 7(9–10):1128–1138CrossRefPubMedGoogle Scholar
  36. 36.
    Mylvaganam H, Bruun T, Vindenes HA et al (2009) Molecular epidemiological investigation of an outbreak of invasive beta-haemolytic streptococcal infection in western Norway. Clin Microbiol Infect 15(3):245–252CrossRefPubMedGoogle Scholar
  37. 37.
    Dawson ED, Taylor AW, Smagala JA et al (2009) Molecular detection of Streptococcus pyogenes and equisimilis subsp. equisimilis. Mol Biotechnol 42(1):117–127CrossRefPubMedGoogle Scholar
  38. 38.
    Duesberg CB, Malhotra-Kumar S, Goossens H et al (2008) Interspecies recombination occurs frequently in quinolone resistance-determining regions of clinical isolates of Streptococcus pyogenes. Antimicrob Agents Chemother 52(11):4191–4193CrossRefPubMedGoogle Scholar
  39. 39.
    Pletz MW, McGee L, Van Beneden CA et al (2006) Fluoroquinolone resistance in invasive Streptococcus pyogenes isolates due to spontaneous mutation and horizontal gene transfer. Antimicrob Agents Chemother 50(3):943–948CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • D. J. McMillan
    • 1
    • 2
  • T. Vu
    • 1
  • P. V. Bramhachari
    • 4
  • S. Y. Kaul
    • 1
    • 3
  • A. Bouvet
    • 5
  • M. S. Shaila
    • 4
  • M. G. Karmarkar
    • 3
  • K. S. Sriprakash
    • 1
  1. 1.Bacterial Pathogenesis LaboratoryThe Queensland Institute of Medical Research (QIMR)BrisbaneAustralia
  2. 2.Griffith Medical Research CollegeGriffith University and the Queensland Institute of Medical Research (QIMR)HerstonAustralia
  3. 3.Department of MicrobiologyKEM HospitalMumbaiIndia
  4. 4.Department of Microbiology and Cell BiologyIndian Institute of ScienceBangaloreIndia
  5. 5.Université Paris Descartes, Service de Microbiologie-Hygiène, Hôtel Dieu AP-HP, Centre National de Référence des Streptocoques LA-SGA-AParisFrance

Personalised recommendations