The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis


There is an urgent need for new, effective agents in topical wound care, and selected honeys show potential in this regard. Using a medical-grade honey, eight species of problematic wound pathogens, including those with high levels of innate or acquired antibiotic resistance, were killed by 4.0–14.8% honey, which is a concentration that can be maintained in the wound environment. Resistance to honey could not be induced under conditions that rapidly induced resistance to antibiotics. Escherichia coli macroarrays were used to determine the response of bacterial cells to a sub-lethal dose of honey. The pattern of gene expression differed to that reported for other antimicrobial agents, indicating that honey acts in a unique and multifactorial way; 78 (2%) genes were upregulated and 46 (1%) genes were downregulated more than two-fold upon exposure to the medical-grade honey. Most of the upregulated genes clustered into distinct functional regulatory groups, with many involved in stress responses, and the majority of downregulated genes encoded for products involved in protein synthesis. Taken together, these data indicate that honey is an effective topical antimicrobial agent that could help reduce some of the current pressures that are promoting antibiotic resistance.

This is a preview of subscription content, log in to check access.

Fig. 1a, b
Fig. 2


  1. 1.

    Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi:10.1038/nrd2201

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129. doi:10.1038/nm1145

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Paterson DL (2006) The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 43:S43–S48. doi:10.1086/504476

    PubMed  Article  Google Scholar 

  4. 4.

    Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr; Infectious Diseases Society of America (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164. doi:10.1086/524891

    PubMed  Article  Google Scholar 

  5. 5.

    Goldstein F (2007) The potential clinical impact of low-level antibiotic resistance in Staphylococcus aureus. J Antimicrob Chemother 59:1–4. doi:10.1093/jac/dkl429

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Cui LZ, Iwamoto A, Lian JQ, Neoh HM, Maruyama T, Horikawa Y, Hiramatsu K (2006) Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 50:428–438. doi:10.1128/AAC.50.2.428-438.2006

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Quentin C, Arpin C, Dubois V, André C, Lagrange I, Fischer I, Brochet JP, Grobost F, Jullin J, Dutilh B, Larribet G, Noury P (2004) Antibiotic resistance rates and phenotypes among isolates of Enterobacteriaceae in French extra-hospital practice. Eur J Clin Microbiol Infect Dis 23:185–193. doi:10.1007/s10096-003-1081-5

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Jain R, Danziger LH (2004) Multidrug-resistant Acinetobacter infections: an emerging challenge to clinicians. Ann Pharmacother 38:1449–1459. doi:10.1345/aph.1D592

    PubMed  Article  Google Scholar 

  9. 9.

    Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, Ecker DJ, Massire C, Eshoo MW, Sampath R, Thomson JM, Rather PN, Craft DW, Fishbain JT, Ewell AJ, Jacobs MR, Paterson DL, Bonomo RA (2006) Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother 50:4114–4123. doi:10.1128/AAC.00778-06

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    O’Callaghan A, Redmond HP (2006) Treatment of sepsis: current status of clinical immunotherapy. Surgeon 4:355–361

    PubMed  Article  Google Scholar 

  11. 11.

    Weigelt J, Itani K, Stevens D, Lau W, Dryden M, Knirsch C; Linezolid CSSTI Study Group (2005) Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother 49:2260–2266. doi:10.1128/AAC.49.6.2260-2266.2005

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Livermore DM, Woodford N (2006) The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 14:413–420. doi:10.1016/j.tim.2006.07.008

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Molan PC (2006) The evidence supporting the use of honey as a wound dressing. Int J Low Extrem Wounds 5:40–54. doi:10.1177/1534734605286014

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Gethin GT, Cowman S, Conroy RM (2008) The impact of Manuka honey dressings on the surface pH of chronic wounds. Int Wound J 5:185–194. doi:10.1111/j.1742-481X.2007.00424.x

    PubMed  Article  Google Scholar 

  15. 15.

    Lotfi A (2008) Use of honey as a medicinal product in wound dressing (human and animal studies): a review. Res J Bio Sci 3:136–140

    Google Scholar 

  16. 16.

    Jull A, Walker N, Parag V, Molan P, Rodgers A; Honey as Adjuvant Leg Ulcer Therapy trial collaborators (2008) Randomized clinical trial of honey-impregnated dressings for venous leg ulcers. Br J Surg 95:175–182. doi:10.1002/bjs.6059

    PubMed  Article  Google Scholar 

  17. 17.

    Visavadia BG, Honeysett J, Danford MH (2008) Manuka honey dressing: an effective treatment for chronic wound infections. Br J Oral Maxillofac Surg 46:55–56. doi:10.1016/j.bjoms.2006.09.013

    PubMed  Article  Google Scholar 

  18. 18.

    Emsen IM (2007) A different and safe method of split thickness skin graft fixation: medical honey application. Burns 33:782–787. doi:10.1016/j.burns.2006.12.005

    PubMed  Article  Google Scholar 

  19. 19.

    Blaser G, Santos K, Bode U, Vetter H, Simon A (2007) Effect of medical honey on wounds colonised or infected with MRSA. J Wound Care 16:325–328

    PubMed  CAS  Google Scholar 

  20. 20.

    Simon A, Sofka K, Wiszniewsky G, Blaser G, Bode U, Fleischhack G (2006) Wound care with antibacterial honey (Medihoney) in pediatric hematology-oncology. Support Care Cancer 14:91–97. doi:10.1007/s00520-005-0874-8

    PubMed  Article  Google Scholar 

  21. 21.

    Molan PC (1992) The antibacterial activity of honey. 1. The nature of the antibacterial activity. Bee World 73:5–28

    Google Scholar 

  22. 22.

    White JW Jr, Subers MH, Schepartz AI (1963) The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta 73:57–70. doi:10.1016/0006-3002(63)90359-7

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Allen KL, Molan PC, Reid GM (1991) A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol 43:817–822

    PubMed  CAS  Google Scholar 

  24. 24.

    Adams CJ, Boult CH, Deadman BJ, Farr JM, Grainger MNC, Manley-Harris M, Snow MJ (2008) Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res 343:651–659. doi:10.1016/j.carres.2007.12.011

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Mavric E, Wittmann S, Barth G, Henle T (2008) Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res 52:483–489. doi:10.1002/mnfr.200700282

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Kalapos MP (2008) The tandem of free radicals and methylglyoxal. Chem Biol Interact 171:251–271. doi:10.1016/j.cbi.2007.11.009

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Brazas MD, Hancock REW (2005) Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. Drug Discov Today 10:1245–1252. doi:10.1016/S1359-6446(05)03566-X

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Hancock RE (2007) The complexities of antibiotic action. Mol Syst Biol 3:142. doi:10.1038/msb4100184

    PubMed  Article  Google Scholar 

  29. 29.

    Hutter B, Schaab C, Albrecht S, Borgmann M, Brunner NA, Freiberg C, Ziegelbauer K, Rock CO, Ivanov I, Loferer H (2004) Prediction of mechanisms of action of antibacterial compounds by gene expression profiling. Antimicrob Agents Chemother 48:2838–2844. doi:10.1128/AAC.48.8.2838-2844.2004

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Freiberg C, Brötz-Oesterhelt H, Labischinski H (2004) The impact of transcriptome and proteome analyses on antibiotic drug discovery. Curr Opin Microbiol 7:451–459. doi:10.1016/j.mib.2004.08.010

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453. doi:10.1016/j.mib.2006.08.006

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Lange RP, Locher HH, Wyss PC, Then RL (2007) The targets of currently used antibacterial agents: lessons for drug discovery. Curr Pharm Des 13:3140–3154. doi:10.2174/138161207782110408

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Alvarez J, Vicente M (2007) Using genomics to identify new targets and counteract resistance to antibiotics. Expert Opin Ther Pat 17:667–674

    Article  CAS  Google Scholar 

  34. 34.

    Cooper RA, Molan PC, Harding KG (2002) The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J Appl Microbiol 93:857–863. doi:10.1046/j.1365-2672.2002.01761.x

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    NCCLS (2000) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. NCCLS Document Approved Standard—Fifth edition

  36. 36.

    Rimsky S (2004) Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol 7:109–114. doi:10.1016/j.mib.2004.02.001

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Marles-Wright J, Lewis RJ (2007) Stress responses of bacteria. Curr Opin Struct Biol 17:755–760. doi:10.1016/

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the σS RpoS subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395. doi:10.1128/MMBR.66.3.373-395.2002

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Dong T, Kirchhof MG, Schellhorn HE (2008) RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol Genet Genomics 279:267–277. doi:10.1007/s00438-007-0311-4

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Eguchi Y, Oshima T, Mori H, Aono R, Yamamoto K, Ishihama A, Utsumi R (2003) Transcriptional regulation of drug efflux genes by EvgAS, a two-component system in Escherichia coli. Microbiology 149:2819–2828. doi:10.1099/mic.0.26460-0

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Eguchi Y, Okada T, Minagawa S, Oshima T, Mori H, Yamamoto K, Ishihama A, Utsumi R (2004) Signal transduction cascade between EvgA/EvgS and PhoP/PhoQ two-component systems of Escherichia coli. J Bacteriol 186:3006–3014. doi:10.1128/JB.186.10.3006-3014.2004

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Simon A, Traynor K, Santos K, Blaser G, Bode U, Molan P (2009) Medical honey for wound care—still the ‘latest resort’? eCAM 6:165–173. doi:10.1093/ecam/nem175

  43. 43.

    Blair SE, Carter DA (2005) The potential for honey in the management of wounds and infection. Aust Infect Contr 10:24–31

    Google Scholar 

  44. 44.

    Cooper RA, Wigley P, Burton NF (2000) Susceptibility of multiresistant strains of Burkholderia cepacia to honey. Lett Appl Microbiol 31:20–24. doi:10.1046/j.1472-765x.2000.00756.x

    PubMed  Article  CAS  Google Scholar 

  45. 45.

    Cooper RA, Halas E, Molan PC (2002) The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. J Burn Care Rehabil 23:366–370. doi:10.1097/00004630-200211000-00002

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    French VM, Cooper RA, Molan PC (2005) The antibacterial activity of honey against coagulase-negative staphylococci. J Antimicrob Chemother 56:228–231. doi:10.1093/jac/dki193

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Braoudaki M, Hilton AC (2004) Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 42:73–78. doi:10.1128/JCM.42.1.73-78.2004

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Booth IR, Ferguson GP, Miller S, Li C, Gunasekera B, Kinghorn S (2003) Bacterial production of methylglyoxal: a survival strategy or death by misadventure? Biochem Soc Trans 31:1406–1408. doi:10.1042/BST0311406

    PubMed  Article  CAS  Google Scholar 

  49. 49.

    Crane E (1976) Honey, a comprehensive survey. London: Heinemann (for the Bee Research Association), p 608

  50. 50.

    Moreillon P (2000) Means of bacterial resistance. Rev Med Suisse Romande 120:641–650

    PubMed  CAS  Google Scholar 

  51. 51.

    Levy SB (2002) Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 92:65S–71S. doi:10.1046/j.1365-2672.92.5s1.4.x

    PubMed  Article  Google Scholar 

  52. 52.

    Kaldalu N, Mei R, Lewis K (2004) Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob Agents Chemother 48:890–896. doi:10.1128/AAC.48.3.890-896.2004

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Herold S, Siebert J, Huber A, Schmidt H (2005) Global expression of prophage genes in Escherichia coli O157:H7 strain EDL933 in response to norfloxacin. Antimicrob Agents Chemother 49:931–944. doi:10.1128/AAC.49.3.931-944.2005

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA 99:17025–17030. doi:10.1073/pnas.252607699

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Hong RW, Shchepetov M, Weiser JN, Axelsen PH (2003) Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide cecropin A. Antimicrob Agents Chemother 47:1–6. doi:10.1128/AAC.47.1.1-6.2003

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Tomasinsig L, Scocchi M, Mettulio R, Zanetti M (2004) Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide. Antimicrob Agents Chemother 48:3260–3267. doi:10.1128/AAC.48.9.3260-3267.2004

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Khil PP, Camerini-Otero RD (2002) Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 44:89–105. doi:10.1046/j.1365-2958.2002.02878.x

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Chang DE, Smalley DJ, Conway T (2002) Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol 45:289–306. doi:10.1046/j.1365-2958.2002.03001.x

    PubMed  Article  CAS  Google Scholar 

  59. 59.

    Hengge-Aronis R (1996) Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol 21:887–893. doi:10.1046/j.1365-2958.1996.511405.x

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Ferguson GP, Creighton RI, Nikolaev Y, Booth IR (1998) Importance of RpoS and Dps in survival of exposure of both exponential- and stationary-phase Escherichia coli cells to the electrophile N-ethylmaleimide. J Bacteriol 180:1030–1036

    PubMed  CAS  Google Scholar 

  61. 61.

    Seputiene V, Daugelavicius A, Suziedelis K, Suziedeliene E (2006) Acid response of exponentially growing Escherichia coli K-12. Microbiol Res 161:65–74. doi:10.1016/j.micres.2005.06.002

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    van Baarlen P, van Belkum A, Summerbell RC, Crous PW, Thomma BPHJ (2007) Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol Rev 31:239–277. doi:10.1111/j.1574-6976.2007.00065.x

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Irish J, Carter DA, Shokohi T, Blair SE (2006) Honey has an antifungal effect against Candida species. Med Mycol 44:289–291. doi:10.1080/13693780500417037

    PubMed  Article  Google Scholar 

  64. 64.

    Brady NF, Molan PC, Harfoot CG (1996) The sensitivity of dermatophytes to the antimicrobial activity of manuka honey and other honey. Pharm Sci 2:471–473

    CAS  Google Scholar 

  65. 65.

    Ferguson GP, Tötemeyer S, MacLean MJ, Booth IR (1998) Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol 170:209–219. doi:10.1007/s002030050635

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Tötemeyer S, Booth NA, Nichols WW, Dunbar B, Booth IR (1998) From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 27:553–562. doi:10.1046/j.1365-2958.1998.00700.x

    PubMed  Article  Google Scholar 

  67. 67.

    Clugston SL, Honek JF (2000) Identification of sequences encoding the detoxification metalloisomerase glyoxalase I in microbial genomes from several pathogenic organisms. J Mol Evol 50:491–495

    PubMed  CAS  Google Scholar 

  68. 68.

    Grant AW, Steel G, Waugh H, Ellis EM (2003) A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. FEMS Microbiol Lett 218:93–99. doi:10.1111/j.1574-6968.2003.tb11503.x

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Misra K, Banerjee AB, Ray S, Ray M (1995) Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Biochem J 305:999–1003

    PubMed  CAS  Google Scholar 

  70. 70.

    Ferguson GP, McLaggan D, Booth IR (1995) Potassium channel activation by glutathione-s-conjugates in Escherichia coli: protection against methylglyoxal is mediated by cytoplasmic acidification. Mol Microbiol 17:1025–1033. doi:10.1111/j.1365-2958.1995.mmi_17061025.x

    PubMed  Article  CAS  Google Scholar 

Download references


We would like to thank the Royal Prince Alfred Hospital (RPA), Sydney, Australia, for supplying the clinical isolates. We are grateful to those who supplied the honeys for these investigations (Dr. Somerville, Senior Apiary Officer, NSW Department of Primary Industries, Australia; Capilano Honey Ltd., Brisbane, Australia; Medihoney Pty Ltd., Brisbane, Australia; and Comvita New Zealand Ltd., Paengaroa, New Zealand). Funding for this project was supplied by the Australian Rural Industries Research and Development, Honeybee Research Program (Grant US-128A).

Author information



Corresponding author

Correspondence to D. A. Carter.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

Supplementary Table S1

(DOC 77 kb)

Supplementary Figure S1

(DOC 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blair, S.E., Cokcetin, N.N., Harry, E.J. et al. The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis. Eur J Clin Microbiol Infect Dis 28, 1199–1208 (2009).

Download citation


  • Methylglyoxal
  • Oxacillin
  • Minimum Bactericidal Concentration
  • Honey Solution
  • Manuka Honey