Skip to main content
Log in

Prospective evaluation of pyrosequencing for the rapid detection of isoniazid and rifampin resistance in clinical Mycobacterium tuberculosis isolates

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

A pyrosequencing-based method for the rapid detection of isoniazid (INH) and rifampin (RIF) resistance in Mycobacterium tuberculosis was evaluated in clinical practice. The method can detect the INH resistance-causing katG315 mutation, and all mutations in the RIF resistance-determining rpoB core region, in less than 6 h from cultured isolates. The method was first validated with 42 isolates, and was subsequently prospectively evaluated with 91 isolates, including clinical isolates and external quality control assessment strains, over a period of 2.5 years. The pyrosequencing results of clinical isolates were available, on average, 19 days earlier (median 19 days; range 3–43 days) than conventional susceptibility testing results. The composite data showed that the sensitivity of pyrosequencing for detecting resistance correctly was 66.7% for INH and 97.4% for RIF. The specificity of pyrosequencing was 100% for both drugs. Acceptable sensitivity for detecting resistance and the rapidness of pyrosequencing make it a valuable tool in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Espinal MA (2003) The global situation of MDR-TB. Tuberculosis (Edinb) 83:44–51 doi:10.1016/S1472-9792(02)00058-6

    Article  Google Scholar 

  2. Dye C, Watt CJ, Bleed DM, Hosseini SM, Raviglione MC (2005) Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. JAMA 293:2767–2775 doi:10.1001/jama.293.22.2767

    Article  PubMed  CAS  Google Scholar 

  3. Brown H (2004) WHO identifies drug-resistant tuberculosis “hotspots”. Former Russian states are worst affected, but lack of data from China hides true extent of disease. Lancet 363:951 doi:10.1016/S0140-6736(04)15823-6

    Article  PubMed  Google Scholar 

  4. Zhang Y, Heym B, Allen B, Young D, Cole S (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593 doi:10.1038/358591a0

    Article  PubMed  CAS  Google Scholar 

  5. Slayden RA, Lee RE, Barry CE 3rd (2000) Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol Microbiol 38:514–525 doi:10.1046/j.1365-2958.2000.02145.x

    Article  PubMed  CAS  Google Scholar 

  6. Mdluli K, Slayden RA, Zhu Y, Ramaswamy S, Pan X, Mead D, Crane DD, Musser JM, Barry CE 3rd (1998) Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 280:1607–1610 doi:10.1126/science.280.5369.1607

    Article  PubMed  CAS  Google Scholar 

  7. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230 doi:10.1126/science.8284673

    Article  PubMed  CAS  Google Scholar 

  8. Somoskovi A, Parsons LM, Salfinger M (2001) The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res 2:164–168 doi:10.1186/rr54

    Article  PubMed  CAS  Google Scholar 

  9. Sajduda A, Brzostek A, Poplawska M, Augustynowicz-Kopec E, Zwolska Z, Niemann S, Dziadek J, Hillemann D (2004) Molecular characterization of rifampin- and isoniazid-resistant Mycobacterium tuberculosis strains isolated in Poland. J Clin Microbiol 42:2425–2431 doi:10.1128/JCM.42.6.2425-2431.2004

    Article  PubMed  CAS  Google Scholar 

  10. Marttila HJ, Soini H, Eerola E, Vyshnevskaya E, Vyshnevskiy BI, Otten TF, Vasilyef AV, Viljanen MK (1998) A Ser315Thr substitution in katG is predominant in genetically heterogeneous multidrug-resistant Mycobacterium tuberculosis isolates originating from the St. Petersburg area in Russia. Antimicrob Agents Chemother 42:2443–2445

    PubMed  CAS  Google Scholar 

  11. Cardoso RF, Cooksey RC, Morlock GP, Barco P, Cecon L, Forestiero F, Leite CQ, Sato DN, Shikama Mde L, Mamizuka EM, Hirata RD, Hirata MH (2004) Screening and characterization of mutations in isoniazid-resistant Mycobacterium tuberculosis isolates obtained in Brazil. Antimicrob Agents Chemother 48:3373–3381 doi:10.1128/AAC.48.9.3373-3381.2004

    Article  PubMed  CAS  Google Scholar 

  12. Bakonyte D, Baranauskaite A, Cicenaite J, Sosnovskaja A, Stakenas P (2003) Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis clinical isolates in Lithuania. Antimicrob Agents Chemother 47:2009–2011 doi:10.1128/AAC.47.6.2009-2011.2003

    Article  PubMed  CAS  Google Scholar 

  13. Ahmad S, Mokaddas E (2004) Contribution of AGC to ACC and other mutations at codon 315 of the katG gene in isoniazid-resistant Mycobacterium tuberculosis isolates from the Middle East. Int J Antimicrob Agents 23:473–479 doi:10.1016/j.ijantimicag.2003.10.004

    Article  PubMed  CAS  Google Scholar 

  14. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341:647–650 doi:10.1016/0140-6736(93)90417-F

    Article  PubMed  CAS  Google Scholar 

  15. Telenti A, Honoré N, Bernasconi C, March J, Ortega A, Heym B, Takiff HE, Cole ST (1997) Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: a blind study at reference laboratory level. J Clin Microbiol 35:719–723

    PubMed  CAS  Google Scholar 

  16. Kapur V, Li LL, Hamrick MR, Plikaytis BB, Shinnick TM, Telenti A, Jacobs WR Jr, Banerjee A, Cole S, Yuen KY, Clarridge JE, Kreiswirth BN, Musser JM (1995) Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med 119:131–138

    PubMed  CAS  Google Scholar 

  17. Wada T, Maeda S, Tamaru A, Imai S, Hase A, Kobayashi K (2004) Dual-probe assay for rapid detection of drug-resistant Mycobacterium tuberculosis by real-time PCR. J Clin Microbiol 42:5277–5285 doi:10.1128/JCM.42.11.5277-5285.2004

    Article  PubMed  CAS  Google Scholar 

  18. Garcia de Viedma D, del Sol Diaz Infantes M, Lasala F, Chaves F, Alcalá L, Bouza E (2002) New real-time PCR able to detect in a single tube multiple rifampin resistance mutations and high-level isoniazid resistance mutations in Mycobacterium tuberculosis. J Clin Microbiol 40:988–995 doi:10.1128/JCM.40.3.988-995.2002

    Article  PubMed  CAS  Google Scholar 

  19. De Beenhouwer H, Lhiang Z, Jannes G, Mijs W, Machtelinckx L, Rossau R, Traore H, Portaels F (1995) Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tuber Lung Dis 76:425–430 doi:10.1016/0962-8479(95)90009-8

    Article  PubMed  Google Scholar 

  20. Ronaghi M, Uhlén M, Nyrén P (1998) A sequencing method based on real-time pyrophosphate. Science 281:363–365

    Article  PubMed  CAS  Google Scholar 

  21. Kolak M, Karpati F, Monstein HJ, Jonasson J (2003) Molecular typing of the bacterial flora in sputum of cystic fibrosis patients. Int J Med Microbiol 293:309–317 doi:10.1078/1438-4221-00265

    Article  PubMed  CAS  Google Scholar 

  22. Haanperä M, Huovinen P, Jalava J (2005) Detection and quantification of macrolide resistance mutations at positions 2058 and 2059 of the 23S rRNA gene by pyrosequencing. Antimicrob Agents Chemother 49:457–460 doi:10.1128/AAC.49.1.457-460.2005

    Article  PubMed  Google Scholar 

  23. Diggle MA, Clarke SC (2004) Genotypic characterization of Neisseria meningitidis using pyrosequencing. Mol Biotechnol 28:139–145 doi:10.1385/MB:28:2:139

    Article  PubMed  CAS  Google Scholar 

  24. Zhao JR, Bai YJ, Zhang QH, Wang Y, Luo M, Yan XJ (2005) Pyrosequencing-based approach for rapid detection of rifampin-resistant Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 51:135–137 doi:10.1016/j.diagmicrobio.2004.10.001

    Article  PubMed  CAS  Google Scholar 

  25. Zhao JR, Bai YJ, Wang Y, Zhang QH, Luo M, Yan XJ (2005) Development of a pyrosequencing approach for rapid screening of rifampin, isoniazid and ethambutol-resistant Mycobacterium tuberculosis. Int J Tuberc Lung Dis 9:328–332

    PubMed  Google Scholar 

  26. Jureen P, Engstrand L, Eriksson S, Alderborn A, Krabbe M, Hoffner SE (2006) Rapid detection of rifampin resistance in Mycobacterium tuberculosis by Pyrosequencing technology. J Clin Microbiol 44:1925–1929 doi:10.1128/JCM.02210-05

    Article  PubMed  CAS  Google Scholar 

  27. Arnold C, Westland L, Mowat G, Underwood A, Magee J, Gharbia S (2005) Single-nucleotide polymorphism-based differentiation and drug resistance detection in Mycobacterium tuberculosis from isolates or directly from sputum. Clin Microbiol Infect 11:122–130 doi:10.1111/j.1469-0691.2004.01034.x

    Article  PubMed  CAS  Google Scholar 

  28. Isola D, Pardini M, Varaine F, Niemann S, Rüsch-Gerdes S, Fattorini L, Orefici G, Meacci F, Trappetti C, Rinaldo Oggioni M, Orrù G; LONG-DRUG study group (2005) A Pyrosequencing assay for rapid recognition of SNPs in Mycobacterium tuberculosis embB306 region. J Microbiol Methods 62:113–120 doi:10.1016/j.mimet.2005.02.004

    Article  PubMed  CAS  Google Scholar 

  29. Hillemann D, Rüsch-Gerdes S, Richter E (2007) Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 45:2635–2640 doi:10.1128/JCM.00521-07

    Article  PubMed  CAS  Google Scholar 

  30. Zhang M, Yue J, Yang YP, Zhang HM, Lei JQ, Jin RL, Zhang XL, Wang HH (2005) Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China. J Clin Microbiol 43:5477–5482 doi:10.1128/JCM.43.11.5477-5482.2005

    Article  PubMed  CAS  Google Scholar 

  31. Musser JM, Kapur V, Williams DL, Kreiswirth BN, van Soolingen D, van Embden JD (1996) Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis 173:196–202

    PubMed  CAS  Google Scholar 

  32. Hazbón MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M, Billman-Jacobe H, Lavender C, Fyfe J, García-García L, León CI, Bose M, Chaves F, Murray M, Eisenach KD, Sifuentes-Osornio J, Cave MD, Ponce de León A, Alland D (2006) Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 50:2640–2649 doi:10.1128/AAC.00112-06

    Article  PubMed  Google Scholar 

  33. Taniguchi H, Aramaki H, Nikaido Y, Mizuguchi Y, Nakamura M, Koga T, Yoshida S (1996) Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiol Lett 144:103–108 doi:10.1111/j.1574-6968.1996.tb08515.x

    Article  PubMed  CAS  Google Scholar 

  34. Ohno H, Koga H, Kohno S, Tashiro T, Hara K (1996) Relationship between rifampin MICs for and rpoB mutations of Mycobacterium tuberculosis strains isolated in Japan. Antimicrob Agents Chemother 40:1053–1056

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marita Kirjonen, Eija Lönnblad, Anna Musku, Tiina Nurmio, and Ulla Toivonen for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mäkinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marttila, H.J., Mäkinen, J., Marjamäki, M. et al. Prospective evaluation of pyrosequencing for the rapid detection of isoniazid and rifampin resistance in clinical Mycobacterium tuberculosis isolates. Eur J Clin Microbiol Infect Dis 28, 33–38 (2009). https://doi.org/10.1007/s10096-008-0584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-008-0584-5

Keywords

Navigation