Skip to main content

Advertisement

Log in

Antifungal activity of 25-azalanosterol against Candida species

  • Concise Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The antifungal properties of 25-azalanosterol was investigated. Compared to normal antifungal reagents, fluoconazole, clotrimazole and voriconazole, it exhibited significant anti-Candida activity (the minimum inhibitory concentration [MIC] ranges were 0.125–8, 0.5–8 and 0.5–32 µg/mL against C. albicans, C. krusei and C. glabrata, respectively), but showed little toxicity to mice liver cells at clinical dosage after 24 h of exposure, with the lowest lactate dehydrogenase and the highest ED50 compared to four other azoles antifungal agents. 25-Azalanosterol inhibited the incorporation of [methyl-3H3] AdoMet into the C-24 of ergosterol in whole cells of C. albicans. Thus, 25-azalanosterol, as an inhibitor of the growth of C. albicans in vitro, may have considerable potential as a new class of anti-Candida agent that lacks toxic side effects in the mammalian host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Long SS, Stevenson DK (2005) Reducing Candida infections during neonatal intensive care: management choices, infection control, and fluconazole prophylaxis. J Pediatr 147:135–141

    Article  PubMed  Google Scholar 

  2. Blyth CC, Palasanthiran P, O’Brien TA (2007) Antifungal therapy in children with invasive fungal infections: a systematic review. Pediatrics 119:772–784

    Article  PubMed  Google Scholar 

  3. Pfaller MA, Pappas PG, Wingard JR (2006) Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis 43:S3–S14

    Article  CAS  Google Scholar 

  4. Fidel PL Jr, Vazquez JA, Sobel JD (1999) Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev 12:80–96

    PubMed  Google Scholar 

  5. Hoppe JE (1997) Treatment of oropharyngeal candidiasis and candidal diaper dermatitis in neonates and infants: review and reappraisal. Pediatr Infect Dis J 16:885–894

    Article  PubMed  CAS  Google Scholar 

  6. Kauffman CA (2006) Endemic mycoses: blastomycosis, histoplasmosis, and sporotrichosis. Clin Infect Dis N Am 20:645–662

    Article  Google Scholar 

  7. Kaufman D, Boyle R, Hazen KC, Patrie JT, Robinson M, Grossman LB (2005) Twice weekly fluconazole prophylaxis for prevention of invasive Candida infection in high-risk infants of <1000 grams birth weight. J Pediatr 147:172–179

    Article  PubMed  CAS  Google Scholar 

  8. Kim CK, Jeon KI, Lim DM, Johng T, Trzaskos JM, Gaylor JL, Paik YK (1995) Cholesterol biosynthesis from lanosterol: regulation and purification of rat hepatic sterol 14-reductase. Biochim Biophys Acta 1259:39–48

    PubMed  Google Scholar 

  9. Kanagasabai R, Zhou WX, Liu JL, Nguyen TT, Veeramachaneni P, Nes WD (2004) Disruption of ergosterol biosynthesis, growth, and the morphological transition in Candida albicans by sterol methyltransferase inhibitors containing sulfur at C-25 in the sterol side chain. Lipids 39:737–746

    PubMed  CAS  Google Scholar 

  10. Zhou WX, Lepesheva GI, Waterman MR, Nes WD (2006) Mechanistic analysis of a multiple product sterol methyltransferase implicated in ergosterol biosynthesis in Trypanosoma brucei. J Biol Chem 281:6290–6296

    Article  PubMed  CAS  Google Scholar 

  11. Kaneshiro ES, Rosenfeld JA, Basselin M, Stringer JR, Keely S, Smulian AG, Giner JL (2002) The Pneumocystis carinii drug target S-adenosyl-L-methionine: sterol C-24 methyl transferase has a unique substrate preference. Mol Microbiol 44:989–999

    Article  PubMed  CAS  Google Scholar 

  12. Zhou WX, Cross GA, Nes WD (2007) Cholesterol import fails to prevent catalyst-based inhibition of ergosterol synthesis and cell proliferation of Trypanosoma brucei. J Lipid Res 48:665–673

    Google Scholar 

  13. Wang JQ, Liu JL, Song ZH, Nes WD (2008) Sterol C24-methyltransferase: mechanistic studies of the C-methylation reaction with 24-fluorocycloartenol. Bioorg Med Chem Lett 18:232–235

    Article  PubMed  CAS  Google Scholar 

  14. Nes WD, Jayasimha P, Zhou WX, Kanagasabai R, Jin C, Jaradat TT, Shaw RW, Bujnicki JM (2004) Sterol methyltransferase: functional analysis of highly conserved residues by site-directed mutagenesis. Biochemistry 43:569–576

    Article  PubMed  CAS  Google Scholar 

  15. Arora A, Raghuraman H, Chattopadhyay A (2004) Influence of cholesterol and ergosterol on membrane dynamics: a fluorescence approach. Biochem Biophys Res Commun 318:920–926

    Article  PubMed  CAS  Google Scholar 

  16. Deyes R (2002) Cell viability assays. Promega Notes 81:32–33

    Google Scholar 

  17. Nanotechnology Characterization Laboratory (NCL) (2006) HEP G2 hepatocarcinoma cytotoxicity assay. NCL Method GTA-2. SAIC-Frederick Inc. pp 3–7

  18. Wang JQ, Nes WD (2008) Mechanism and scope of cyclobranol modulated 24-sterol methyltransferase catalysis enzyme inactivation and concurrent C24-alkylation and dealkylation. J Biol Chem (in Press)

  19. Worsham DN, Basselin M, Smulian AG, Beach DH, Kaneshiro ES (2003) Evidence for cholesterol scavenging by Pneumocystis and potential modifications of host-synthesized sterols by the P. carinii SAM:SMT. J Eukaryot Microbiol 50:678–679

    Article  PubMed  Google Scholar 

  20. Smith PB, Steinbach WJ, Benjamin DK Jr (2005) Neonatal candidiasis. Infect Dis Clin North Am 19:603–615

    Article  PubMed  Google Scholar 

  21. Zaoutis TE, Heydon K, Localio R, Walsh TJ, Feudtner C (2007) Outcomes attributable to neonatal candidiasis. Clin Infect Dis 44:1187–1193

    Article  PubMed  Google Scholar 

  22. Song ZH, Zhou WX, Liu JL, Nes WD (2004) Mechanism-based active site modification of the soybean sterol methyltransferase by 26,27-dehydrocycloartenol. Bioorg Med Chem Lett 14:33–36

    Article  PubMed  CAS  Google Scholar 

  23. Taylor FR, Rodriguez RJ, Parks LW (1983) Relationship between antifungal activity and inhibition of sterol biosynthesis in miconazole, clotrimazole, and 15-azasterol. Antimicrob Agents Chemother 23:515–521

    PubMed  CAS  Google Scholar 

  24. Borgers M, Van den Bossche H (1982) The mode of action of antifungal drugs. Ketoconazole in the management of fungal disease. Adis Press, New York, pp 25–47

    Google Scholar 

Download references

Acknowledgement

The authors wish to thank Prof. W. D. Nes for his assistance in the experimental procedures and the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wu, J. Antifungal activity of 25-azalanosterol against Candida species. Eur J Clin Microbiol Infect Dis 27, 1131–1136 (2008). https://doi.org/10.1007/s10096-008-0554-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-008-0554-y

Keywords

Navigation