Skip to main content
Log in

Influence of azithromycin and clarithromycin on macrolide susceptibility of viridans streptococci from the oral cavity of healthy volunteers

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Oral viridans streptococci are a reservoir of resistance genes for pathogens. Through prolonged exposure, long-acting macrolides (e.g., azithromycin) may induce the resistance of the commensals to macrolides more frequently than macrolides with a shorter half-life (e.g., clarithromycin). In a prospective, randomized, evaluator-blinded trial in healthy volunteers receiving standard courses of either azithromycin (n = 20) or clarithromycin (n = 20), we compared the susceptibility of oral viridans streptococci to macrolides over a period of 12 weeks. There was a significant temporal increase in the numbers of resistant isolates in both groups (p < 0.0005 at week 1). The proportion of macrolide-resistant isolates over time was significantly higher following azithromycin treatment (p = 0.0005), but returned to baseline values until week 12 in both groups. Temporal differential effects of azithromycin and clarithromycin on the induction of resistance were observed and need to be investigated regarding their effect on co-colonizing pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3a, b

Similar content being viewed by others

References

  1. Bennett J, St Geme JW 3rd (1999) Bacterial resistance and antibiotic use in the emergency department. Pediatr Clin North Am 46:1125–1143

    Article  PubMed  CAS  Google Scholar 

  2. Cantón R, Unal S, Farrell DJ (2007) Antibacterial resistance patterns in Streptococcus pneumoniae isolated from elderly patients: PROTEKT years 1–5 (1999–2004). Int J Antimicrob Agents 30:546–550

    Article  PubMed  Google Scholar 

  3. Arvand M, Hoeck M, Hahn H et al (2000) Antimicrobial resistance in Streptococcus pyogenes isolates in Berlin. J Antimicrob Chemother 46:621–624

    Article  PubMed  CAS  Google Scholar 

  4. Brandt CM, Honscha M, Truong ND et al (2001) Macrolide resistance in Streptococcus pyogenes isolates from throat infections in the region of Aachen, Germany. Microb Drug Resist 7:165–170

    Article  PubMed  CAS  Google Scholar 

  5. Bergman M, Huikko S, Pihlajamäki M et al (2004) Effect of macrolide consumption on erythromycin resistance in Streptococcus pyogenes in Finland in 1997–2001. Clin Infect Dis 38:1251–1256

    Article  PubMed  CAS  Google Scholar 

  6. Schoening TE, Wagner J, Arvand M (2005) Prevalence of erythromycin and clindamycin resistance among Streptococcus agalactiae isolates in Germany. Clin Microbiol Infect 11:579–582

    Article  PubMed  CAS  Google Scholar 

  7. Cha S, Lee H, Lee K et al (2001) The emergence of erythromycin-resistant Streptococcus pyogenes in Seoul, Korea. J Infect Chemother 7:81–86

    Article  PubMed  CAS  Google Scholar 

  8. Cizman M, Pokorn M, Seme K et al (2001) The relationship between trends in macrolide use and resistance to macrolides of common respiratory pathogens. J Antimicrob Chemother 47:475–477

    Article  PubMed  CAS  Google Scholar 

  9. Seppälä H, Klaukka T, Vuopio-Varkila J et al (1997) The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. Finnish Study Group for Antimicrobial Resistance. N Engl J Med 337:441–446

    Article  PubMed  Google Scholar 

  10. Doern GV, Brown SD (2004) Antimicrobial susceptibility among community-acquired respiratory tract pathogens in the USA: data from PROTEKT US 2000–01. J Infect 48:56–65

    Article  PubMed  Google Scholar 

  11. Teng LJ, Hsueh PR, Chen YC et al (1998) Antimicrobial susceptibility of viridans group streptococci in Taiwan with an emphasis on the high rates of resistance to penicillin and macrolides in Streptococcus oralis. J Antimicrob Chemother 41:621–627

    Article  PubMed  CAS  Google Scholar 

  12. Ioannidou S, Tassios PT, Kotsovili-Tseleni A et al (2001) Antibiotic resistance rates and macrolide resistance phenotypes of viridans group streptococci from the oropharynx of healthy Greek children. Int J Antimicrob Agents 17:195–201

    Article  PubMed  CAS  Google Scholar 

  13. Aracil B, Miñambres M, Oteo J et al (2001) High prevalence of erythromycin-resistant and clindamycin-susceptible (M phenotype) viridans group streptococci from pharyngeal samples: a reservoir of mef genes in commensal bacteria. J Antimicrob Chemother 48:592–594

    Article  PubMed  CAS  Google Scholar 

  14. Seppälä H, Haanperä M, Al-Juhaish M et al (2003) Antimicrobial susceptibility patterns and macrolide resistance genes of viridans group streptococci from normal flora. J Antimicrob Chemother 52:636–644

    Article  PubMed  Google Scholar 

  15. Luna VA, Coates P, Eady EA et al (1999) A variety of gram-positive bacteria carry mobile mef genes. J Antimicrob Chemother 44:19–25

    Article  PubMed  CAS  Google Scholar 

  16. Villedieu A, Diaz-Torres ML, Roberts AP et al (2004) Genetic basis of erythromycin resistance in oral bacteria. Antimicrob Agents Chemother 48:2298–2301

    Article  PubMed  CAS  Google Scholar 

  17. Cerdá Zolezzi P, Laplana LM, Calvo CR et al (2004) Molecular basis of resistance to macrolides and other antibiotics in commensal viridans group streptococci and Gemella spp. and transfer of resistance genes to Streptococcus pneumoniae. Antimicrob Agents Chemother 48:3462–3467

    Article  PubMed  Google Scholar 

  18. Drlica K (2003) The mutant selection window and antimicrobial resistance. J Antimicrob Chemother 52:11–17

    Article  PubMed  CAS  Google Scholar 

  19. Granizo JJ, Aguilar L, Casal J et al (2000) Streptococcus pyogenes resistance to erythromycin in relation to macrolide consumption in Spain (1986–1997). J Antimicrob Chemother 46:959–964

    Article  PubMed  CAS  Google Scholar 

  20. Reinert RR, Al-Lahham A, Lemperle M et al (2002) Emergence of macrolide and penicillin resistance among invasive pneumococcal isolates in Germany. J Antimicrob Chemother 49:61–68

    Article  PubMed  CAS  Google Scholar 

  21. Fuchs PC, Barry AL, Brown SD (2001) Influence of variations in test methods on susceptibility of Haemophilus influenzae to ampicillin, azithromycin, clarithromycin, and telithromycin. J Clin Microbiol 39:43–46

    Article  PubMed  CAS  Google Scholar 

  22. Malhotra-Kumar S, Lammens C, Coenen S et al (2007) Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, placebo-controlled study. Lancet 369:482–490

    Article  PubMed  CAS  Google Scholar 

  23. Kastner U, Guggenbichler JP (2001) Influence of macrolide antibiotics on promotion of resistance in the oral flora of children. Infection 29:251–256

    Article  PubMed  CAS  Google Scholar 

  24. Mazzariol A, Koncan R, Vitali LA et al (2007) Activities of 16-membered ring macrolides and telithromycin against different genotypes of erythromycin-susceptible and erythromycin-resistant Streptococcus pyogenes and Streptococcus pneumoniae. J Antimicrob Chemother 59:1171–1176

    Article  PubMed  CAS  Google Scholar 

  25. Patel KB, Xuan D, Tessier PR et al (1996) Comparison of bronchopulmonary pharmacokinetics of clarithromycin and azithromycin. Antimicrob Agents Chemother 40:2375–2379

    PubMed  CAS  Google Scholar 

  26. Noreddin AM, Roberts D, Nichol K et al (2002) Pharmacodynamic modeling of clarithromycin against macrolide-resistant [PCR-positive mef(A) or erm(B)] Streptococcus pneumoniae simulating clinically achievable serum and epithelial lining fluid free-drug concentrations. Antimicrob Agents Chemother 46:4029–4034

    Article  PubMed  CAS  Google Scholar 

  27. Zhanel GG, DeCorby M, Noreddin A et al (2003) Pharmacodynamic activity of azithromycin against macrolide-susceptible and -resistant Streptococcus pneumoniae simulating clinically achievable free serum, epithelial lining fluid and middle ear fluid concentrations. J Antimicrob Chemother 52:83–88

    Article  PubMed  CAS  Google Scholar 

  28. Clewell DB, Flannagan SE, Jaworski DD (1995) Unconstrained bacterial promiscuity: the Tn916–Tn1545 family of conjugative transposons. Trends Microbiol 3:229–236

    Article  PubMed  CAS  Google Scholar 

  29. Felmingham D, Reinert RR, Hirakata Y et al (2002) Increasing prevalence of antimicrobial resistance among isolates of Streptococcus pneumoniae from the PROTEKT surveillance study, and comparative in vitro activity of the ketolide, telithromycin. J Antimicrob Chemother 50(Suppl S1):25–37

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported financially by Pfizer Pharmaceuticals, Pfizer, New York, NY. The company was not involved in the analysis and presentation of the data, nor with the preparation of the manuscript. Parts of this work were presented at the 14th European Congress on Clinical Microbiology and Infectious Diseases (ECCMID), Prague, Czech Republic, April 2004, poster #P521.

We are grateful to Prof. Walter E. Haefeli, Department of Internal Medicine VI, Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Germany, for the determination of the antimicrobial concentrations in urine. We thank Jutta Imlau, Gabriele Schreiber, and Margot Rau for their expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eisenblätter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenblätter, M., Klaus, C., Pletz, M.W.R. et al. Influence of azithromycin and clarithromycin on macrolide susceptibility of viridans streptococci from the oral cavity of healthy volunteers. Eur J Clin Microbiol Infect Dis 27, 1087–1092 (2008). https://doi.org/10.1007/s10096-008-0547-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-008-0547-x

Keywords

Navigation