Skip to main content

Advertisement

Log in

The prevalence of plasmid-mediated AmpC β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children’s hospitals in China

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the prevalence of plasmid-mediated AmpC β-lactamases in Escherichia coli and Klebsiella pneumoniae from five children’s hospitals in China. A total of 494 E. coli and 637 K. pneumoniae isolates were collected from five children’s hospitals in China from 2005 to 2006. The isolates with decreased susceptibility to cefoxitin were subjected to confirmation test with 3-aminophenyl boronic acid. Polymerase chain reaction (PCR) amplification of the blaAmpC, blaTEM, blaCTXM, and blaSHV genes and their gene sequencing were performed. Transconjugants were achieved by conjugation experiments. Plasmid-mediated AmpC β-lactamases were found in 10.1% of K. pneumoniae (64/637) and in 2.0% of E. coli (10/494) strains. The proportion of plasmid-mediated AmpC-producing strains significantly increased from 2005 (2.6%) to 2006 (9.3%) (p<0.001). The DHA-1-producing isolates were the most prevalent type (93.2%, 69/74). The sequences of blaDHA-1 genes were all identical to those from the GenBank. Strains of blaCMY-2 were isolated from five isolates (6.8%), which were all from E. coli. One sequence of blaCMY-2 differs from blaCMY-2 in the GenBank. Eighteen of the 74 (24.3%) AmpC-producing K. pneumoniae and E. coli isolates coproduced an extended-spectrum β-lactamase (ESBL). Cefoxitin resistance was transferred to 15 of the 74 positive strains (20.3%). Our study has demonstrated the occurrence of plasmid-mediated AmpC β-lactamases in E. coli and K. pneumoniae in Chinese pediatric patients and DHA-1 type AmpC enzymes had the highest prevalent rate. The CMY-2 AmpC β-lactamases from the children’s hospitals in China in this study are the first reported. Hence, continuous surveillance of the prevalence and evolution of AmpC β-lactamase is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Verdet C, Benzerara Y, Gautier V, Adam O, Ould-Hocine Z, Arlet G (2006) Emergence of DHA-1-producing Klebsiella spp. in the Parisian region: genetic organization of the ampC and ampR genes originating from Morganella morganii. Antimicrob Agents Chemother 50(2):607–617

    Article  PubMed  CAS  Google Scholar 

  2. Bauernfeind A, Chong Y, Schweighart S (1989) Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 17(5):316–321

    Article  PubMed  CAS  Google Scholar 

  3. Hanson ND (2003) AmpC beta-lactamases: what do we need to know for the future? J Antimicrob Chemother 52(1):2–4

    Article  PubMed  CAS  Google Scholar 

  4. Bauernfeind A, Jungwirth R, Schweighart S, Theopold M (1990) Antibacterial activity and beta-lactamase stability of eleven oral cephalosporins. Infection 18(Suppl 3):S155–S167

    Article  PubMed  CAS  Google Scholar 

  5. Yan JJ, Ko WC, Tsai SH, Wu HM, Jin YT, Wu JJ (2000) Dissemination of CTX-M-3 and CMY-2 beta-lactamases among clinical isolates of Escherichia coli in southern Taiwan. J Clin Microbiol 38(12):4320–4325

    PubMed  CAS  Google Scholar 

  6. Gaillot O, Clément C, Simonet M, Philippon A (1997) Novel transferable beta-lactam resistance with cephalosporinase characteristics in Salmonella enteritidis. J Antimicrob Chemother 39(1):85–87

    Article  PubMed  CAS  Google Scholar 

  7. Fortineau N, Poirel L, Nordmann P (2001) Plasmid-mediated and inducible cephalosporinase DHA-2 from Klebsiella pneumoniae. J Antimicrob Chemother 47(2):207–210

    Article  PubMed  CAS  Google Scholar 

  8. Philippon A, Arlet G, Jacoby GA (2002) Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother 46(1):1–11

    Article  PubMed  CAS  Google Scholar 

  9. Song W, Jeong SH, Kim JS, Kim HS, Shin DH, Roh KH, Lee KM (2007) Use of boronic acid disk methods to detect the combined expression of plasmid-mediated AmpC beta-lactamases and extended-spectrum beta-lactamases in clinical isolates of Klebsiella spp., Salmonella spp., and Proteus mirabilis. Diagn Microbiol Infect Dis 57(3):315–318

    Article  PubMed  CAS  Google Scholar 

  10. Alvarez M, Tran JH, Chow N, Jacoby GA (2004) Epidemiology of conjugative plasmid-mediated AmpC beta-lactamases in the United States. Antimicrob Agents Chemother 48(2):533–537

    Article  PubMed  CAS  Google Scholar 

  11. Moland ES, Hong SG, Thomson KS, Larone DH, Hanson ND (2007) Klebsiella pneumoniae isolate producing at least eight different beta-lactamases, including AmpC and KPC beta-lactamases. Antimicrob Agents Chemother 51(2):800–801

    Article  PubMed  CAS  Google Scholar 

  12. Paterson DL (2006) Resistance in gram-negative bacteria: enterobacteriaceae. Am J Med 119(6 Suppl 1):S20–S28; discussion S62–S70

    Article  PubMed  CAS  Google Scholar 

  13. Xiong Z, Zhu D, Wang F, Zhang Y, Okamoto R, Inoue M (2002) Investigation of extended-spectrum beta-lactamase in Klebsiellae pneumoniae and Escherichia coli from China. Diagn Microbiol Infect Dis 44(2):195–200

    Article  PubMed  CAS  Google Scholar 

  14. Wei ZQ, Chen YG, Yu YS, Lu WX, Li LJ (2005) Nosocomial spread of multi-resistant Klebsiella pneumoniae containing a plasmid encoding multiple beta-lactamases. J Med Microbiol 54(Pt 9):885–888

    Article  PubMed  CAS  Google Scholar 

  15. Clinical and Laboratory Standards Institute (CLSI) (2005) Performance standards for antimicrobial susceptibility testing; fifteenth informational supplement. CLSI, Wayne, PA

    Google Scholar 

  16. Yagi T, Wachino J, Kurokawa H, Suzuki S, Yamane K, Doi Y, Shibata N, Kato H, Shibayama K, Arakawa Y (2005) Practical methods using boronic acid compounds for identification of class C beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 43(6):2551–2558

    Article  PubMed  CAS  Google Scholar 

  17. National Committee for Clinical Laboratory Standards (NCCLS) (2003) Performance standards for antimicrobial disk susceptibility tests. Approved standard M2-A8, 8th edn. NCCLS, Wayne, PA

    Google Scholar 

  18. Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40(6):2153–2162

    Article  PubMed  Google Scholar 

  19. Liebana E, Gibbs M, Clouting C, Barker L, Clifton-Hadley FA, Pleydell E, Abdalhamid B, Hanson ND, Martin L, Poppe C, Davies RH (2004) Characterization of beta-lactamases responsible for resistance to extended-spectrum cephalosporins in Escherichia coli and Salmonella enterica strains from food-producing animals in the United Kingdom. Microbial Drug Resist 10(1):1–9

    Article  CAS  Google Scholar 

  20. Hanson ND, Thomson KS, Moland ES, Sanders CC, Berthold G, Penn RG (1999) Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmid-mediated AmpC. J Antimicrob Chemother 44(3):377–380

    Article  PubMed  CAS  Google Scholar 

  21. Rasheed JK, Jay C, Metchock B, Berkowitz F, Weigel L, Crellin J, Steward C, Hill B, Medeiros AA, Tenover FC (1997) Evolution of extended-spectrum beta-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob Agents Chemother 41(3):647–653

    PubMed  CAS  Google Scholar 

  22. Pitout JD, Hossain A, Hanson ND (2004) Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol 42(12):5715–5721

    Article  PubMed  CAS  Google Scholar 

  23. Moland ES, Black JA, Ourada J, Reisbig MD, Hanson ND, Thomson KS (2002) Occurrence of newer beta-lactamases in Klebsiella pneumoniae isolates from 24 U.S. hospitals. Antimicrob Agents Chemother 46(12):3837–3842

    Article  PubMed  CAS  Google Scholar 

  24. Zhang YL, Li JT, Zhao MW (2001) Detection of amp C in Enterobacter cloacae in China. Int J Antimicrob Agents 18(4):365–371

    Article  PubMed  CAS  Google Scholar 

  25. Liu JH, Wei SY, Ma JY, Zeng ZL, Lu DH, Yang GX, Chen ZL (2007) Detection and characterisation of CTX-M and CMY-2 beta-lactamases among Escherichia coli isolates from farm animals in Guangdong Province of China. Int J Antimicrob Agents 29(5):576–581

    Article  PubMed  CAS  Google Scholar 

  26. Tan TY, Ng LS, Teo L, Koh Y, Teok CH (2007) Detection of plasmid-mediated ampc in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. J Clin Pathol [Epub ahead of print]

  27. Peterson LR (2005) Squeezing the antibiotic balloon: the impact of antimicrobial classes on emerging resistance. Clin Microbiol Infect 11(Suppl 5):4–16

    Article  PubMed  CAS  Google Scholar 

  28. Paterson DL (2004) “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis 38(Suppl 4):S341–S345

    Article  PubMed  CAS  Google Scholar 

  29. Yan JJ, Ko WC, Wu HM, Tsai SH, Chuang CL, Wu JJ (2004) Complexity of Klebsiella pneumoniae isolates resistant to both cephamycins and extended-spectrum cephalosporins at a teaching hospital in Taiwan. J Clin Microbiol 42(11):5337–5340

    Article  PubMed  CAS  Google Scholar 

  30. Song W, Kim JS, Kim HS, Yong D, Jeong SH, Park MJ, Lee KM (2006) Increasing trend in the prevalence of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal ampC gene at a Korean university hospital from 2002 to 2004. Diagn Microbiol Infect Dis 55(3):219–224

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (no. 2004BA720A09–01) from the Health Ministry of China. We would like to thank all of the participating hospitals for their support. We also thank Dingxia Shen, the 301 Hospital of Chinese People Library Army, for graciously supplying the strain of E. coli J53AzR and the control strains, and Lin Yuan, for his assistance in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H., Yang, Y., Lu, Q. et al. The prevalence of plasmid-mediated AmpC β-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from five children’s hospitals in China. Eur J Clin Microbiol Infect Dis 27, 915–921 (2008). https://doi.org/10.1007/s10096-008-0532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-008-0532-4

Keywords

Navigation