Emergence of methicillin-resistant Staphylococcus aureus with Panton–Valentine leukocidin genes in central Europe

  • W. WitteEmail author
  • C. Braulke
  • C. Cuny
  • B. Strommenger
  • G. Werner
  • D. Heuck
  • U. Jappe
  • C. Wendt
  • H.-J. Linde
  • D. Harmsen


The aim of the present study was to investigate strains of methicillin-resistant Staphylococcus aureus (MRSA) for the presence of the lukS–lukF determinant of Panton–Valentine leukocidin and to further characterize strains found to contain the genes. During the past 2 years, MRSA containing the lukS–lukF genes for Panton–Valentine leukocidin, particularly those emerging outside of hospitals, have become of interest. MRSA strains sent to the national reference center in Germany were investigated for lukS–lukF by polymerase chain reaction (PCR). If the presence of lukS–lukF was demonstrated, strains were further characterized by molecular typing (determination of SmaI pattern, spa sequence, and multilocus sequence type), PCR demonstration of resistance genes, and characterization of the SCCmec element. Since the end of 2002, MRSA containing Panton–Valentine leukocidin genes have been demonstrated as the causative agent of 28 cases of infection (9 community-acquired cases, 19 sporadic nosocomial cases) in different areas of Germany. Twenty-seven of these 28 isolates exhibited a unique pattern of genomic typing: all exhibited multilocus sequence type 80, spa sequence type 44, and a SmaI macrorestriction pattern that corresponds to a community-acquired strain of MRSA from France and Switzerland. In addition to resistance to oxacillin, the strains exhibited resistance to ciprofloxacin, tetracycline (tetM), and fusidic acid, the last of which is encoded by the far-1 gene. The far-1 gene was shown to be located on the plasmid. One isolate corresponded to community MRSA (cMRSA) of multilocus sequence type 1 from the USA.


Fusidic Acid SCCmec Type tetM SCCmec Element Valentine Leukocidin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chambers HF (2001) The changing epidemiology of Staphylococcus aureus?. Emerg Infect Dis 7:178–182PubMedGoogle Scholar
  2. 2.
    Warshawsky B, Hussain Z, Gregson D et al (2000) Hospital and community based surveillance of methicillin-resistant Staphylococcus aureus: previous hospitalization is the major risk factor. Infect Control Hosp Epidemiol 21:724–727PubMedGoogle Scholar
  3. 3.
    Salgado C, Farr B, Calfee D (2003) Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clin Infect Dis 36:131–139PubMedGoogle Scholar
  4. 4.
    Egeria JM, Chambers H (2003) Community-acquired methicillin-resistant Staphylococcus aureus: epidemiology and potential virulence factors. Curr Infect Dis Rep 5:459–466PubMedGoogle Scholar
  5. 5.
    Naimi TS, LeDell KH, Boxrud J et al (2000) Epidemiology and clonality of community-acquired methicillin-resistant Staphylococcus aureus in Minnesota, 1996–1998. Clin Infect Dis 33:990–996Google Scholar
  6. 6.
    Embil J, Ramotar K, Romance L et al (1994) Methicillin-resistant Staphylococcus aureus in tertiary care institutions on the Canadian prairies 1990–1992. Infect Control Hosp Epidemiol 15:646–651PubMedGoogle Scholar
  7. 7.
    Turnridge JD, Bell JM (2000) Methicillin-resistant Staphylococcus aureus evolution in Australia over 35 years. Microb Drug Resist 6:223–229PubMedGoogle Scholar
  8. 8.
    Vandenesch F, Naimi T, Enright M et al (2003) Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton–Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 9:978–984PubMedGoogle Scholar
  9. 9.
    Okuma K, Iwakawa K, Turnridge J et al (2002) Dissemination of new methicillin-resistant Staphylococcus aureus in the community. J Clin Microbiol 40:4289–4294PubMedGoogle Scholar
  10. 10.
    Baba T, Takeuchi T, Kuroda M et al (2002) Genome and virulence determinants of high-virulence community-acquired MRSA. Lancet 359:1818–1827PubMedGoogle Scholar
  11. 11.
    Witte W, Kresken M, Braulke C et al (1997) Increasing incidence and widespread dissemination of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals in Central Europe, with special reference to German hospitals. Clin Microbiol Infect 3:414–422PubMedGoogle Scholar
  12. 12.
    National Committee for Clinical Laboratory Standards (2002) Performance standards for antimicrobial susceptibility testing. Informational supplement M100-S12. NCCLS, Villanova, PAGoogle Scholar
  13. 13.
    Murchan S, Kaufmann ME, Deplano A et al (2003) Harmonization of pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-resistant Staphylococcus aureus: a single approach developed by consensus of 10 European laboratories and its application for tracing the spead of related strains. J Clin Microbiol 41:1574–1585PubMedGoogle Scholar
  14. 14.
    Claus H, Cuny C, Pasemann B, Witte W (1998) A database system for fragment patterns of genomic DNA of Staphylococcus aureus. Zentralbl Bakteriol 287:105–116PubMedGoogle Scholar
  15. 15.
    Harmsen D, Claus H, Witte W et al (2003) Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442–5448PubMedGoogle Scholar
  16. 16.
    Enright M, Robinson D, Randle G et al (2002) The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Nat Acad Sci USA 99:7687–7692Google Scholar
  17. 17.
    Werner G, Hildebrandt B, Witte W (2001) Aminoglycoside-streptothricin resistance gene cluster aadE-sat4-aphA-3 disseminated among multiresistant isolates of Enterococcus faecium. Antimicrob Agents Chemother 45:3267–3269PubMedGoogle Scholar
  18. 18.
    Lina G, Piemont Y, Godait-Gamot F et al (1999) Involvement of Panton–Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29:1128–1132CrossRefPubMedGoogle Scholar
  19. 19.
    Braulke C, Heuck D, Witte W (1999) Ergebnisse der Tätigkeit des Nationalen Referenzzentrums für Staphylokokken im Jahr 1998. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 42:499–506Google Scholar
  20. 20.
    Oliveira D, De Lencastre H (2002) Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 46:2155–2161PubMedGoogle Scholar
  21. 21.
    Ma X, Ito T, Tiensasitorn C et al (2002) A novel type of staphylococcal cassette chromsome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother 46:1147–1152PubMedGoogle Scholar
  22. 22.
    Huletsky A, Giroux R, Rossbach V, Gagnon M, Vaillancourt M, Bernier M, Gagnon F, Truchon K, Bastien M, Picard FJ et al (2004) New real time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol 42:1875–1884PubMedGoogle Scholar
  23. 23.
    Strommenger B, Cuny C, Werner G et al (2003) Obvious lack of association between dynamics of epidemic methicillin-resistant Staphylococcus aureus in Central Europe and agr specificity groups. Eur J Clin Microbiol Infect Dis 22:15–19Google Scholar
  24. 24.
    O’Brien FG, Price C, Grubb WB, Gustafson JE (2002) Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J Antimicrob Chemother 50:313–321PubMedGoogle Scholar
  25. 25.
    Besier S, Ludwig A, Bade V, Wichelhaus T (2003) Molecular analysis of fusidic acid resistance in Staphylococcus aureus. Mol Microbiol 47:463–469PubMedGoogle Scholar
  26. 26.
    Ravenscroft JC, Layton AM, Eady EA et al (2003) Short-term effects of topical fusidic acid or mupirocin on the prevalence of fusidic acid resistant (FusR) Staphylococcus aureus in atopic eczema. Br J Dermatol 148:1010–1017PubMedGoogle Scholar
  27. 27.
    Koreen L, Ramaswamy SV, Graviss EA et al (2004) spa-typing method for discriminating among Staphylococcus aureus isolates. Implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792–799Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • W. Witte
    • 1
    Email author
  • C. Braulke
    • 1
  • C. Cuny
    • 1
  • B. Strommenger
    • 1
  • G. Werner
    • 1
  • D. Heuck
    • 1
  • U. Jappe
    • 2
  • C. Wendt
    • 2
  • H.-J. Linde
    • 3
  • D. Harmsen
    • 4
  1. 1.Robert Koch InstituteWernigerode BranchWernigerodeGermany
  2. 2.Dermatological Clinic and Institute of HygieneHeidelberg UniversityHeidelbergGermany
  3. 3.Institute for Medical MicrobiologyUniversity of RegensburgRegensburgGermany
  4. 4.Institute of HygieneUniversity MuensterMuensterGermany

Personalised recommendations