Skip to main content
Log in

Tensor completion via multi-directional partial tensor nuclear norm with total variation regularization

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

This paper addresses the tensor completion problem, whose task is to estimate missing values with limited information. However, the crux of this problem is how to reasonably represent the low-rank structure embedded in the underlying data. In this work, we consider a new low-rank tensor completion model combined with the multi-directional partial tensor nuclear norm and the total variation (TV) regularization. Specifically, the partial sum of the tensor nuclear norm (PSTNN) is used to narrow the gap between the tensor tubal rank and its lower convex envelop [i.e. tensor nuclear norm (TNN)], and the TV regularization is adopted to maintain the smooth structure along the spatial dimension. In addition, the weighted sum of the tensor nuclear norm (WSTNN) is introduced to replace the traditional TNN to extend the PSTNN to the high-order tensor, which also can flexibly handle different correlations along different modes, resulting in an improved low d-tubal rank approximation. To tackle this new model, we develop the alternating directional method of multipliers (ADMM) algorithm tailored for the proposed optimization problem. Theoretical analysis of the ADMM is conducted to prove the Karush–Kuhn–Tucker (KKT) conditions. Numerical examples demonstrate the proposed method outperforms some state-of-the-art methods in qualitative and quantitative aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. http://www.cs.columbia.edu/CAVE/databases/multispectral.

  2. https://brainweb.bic.mni.mcgill.ca/.

  3. http://trace.eas.asu.edu/yuv/.

  4. http://openremotesensing.net/knowledgebase/hyperspectral-video/.

References

  1. Bagirov, A., Karmitsa, N., Marko, M.M.: Nonconvex Analysis. Introduction to Nonsmooth Optimization. Springer, London (2014)

    Book  Google Scholar 

  2. Cai, J.-F., Candès, E.J., Shen, Z.-W.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  Google Scholar 

  3. Carroll, J.D., Pruzansky, S., Kruskal, J.B.: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters. Psychometrika 45(1), 3–24 (1980)

    Article  MathSciNet  Google Scholar 

  4. Chen, C.-H., He, B.-S., Yuan, X.-M.: Matrix completion via an alternating direction method. IMA J. Numer. Anal. 32(1), 227–245 (2012)

    Article  MathSciNet  Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  6. Comon, P.: Tensor decompositions: state of the art and applications. Math. Signal Proces, Inst. Math. Appl. Conf. Ser. New Ser. 71. Oxford University Press, Oxford (2001)

  7. Fazel, M.: Matrix rank minimization with applications. Ph.D. Thesis, Stanford University, Stanford, CA (2002)

  8. Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-\(n\)-rank tensor recovery via convex optimization. Inverse Prob. 27(2), 025010 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gao, S.-Q., Zhuang, X.-H.: Robust approximations of low-rank minimization for tensor completion. Neurocomputing 379, 319–333 (2020)

    Article  Google Scholar 

  10. Hillar, C.J., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM. 60(6), 45:1-45:39 (2013)

    Article  MathSciNet  Google Scholar 

  11. Ji, T.-Y., Huang, T.-Z., Zhao, X.-L., Ma, T.-H., Deng, L.-J.: A non-convex tensor rank approximation for tensor completion. Appl. Math. Model. 48, 410–422 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ji, T.-Y., Huang, T.-Z., Zhao, X.-L., Ma, T.-H., Liu, G.: Tensor completion using total variation and low-rank matrix factorization. Inf. Sci. 326, 243–257 (2016)

    Article  MathSciNet  Google Scholar 

  13. Jiang, T.-X., Huang, T.-Z., Zhao, X.-L., Deng, L.-J.: Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm. J. Comput. Appl. Math. 372, 112680 (2020)

    Article  MathSciNet  Google Scholar 

  14. Jiang, T.-X., Huang, T.-Z., Zhao, X.-L., Deng, L.-J., Wang, Y.: Fastderain: a novel video rain streak removal method using directional gradient priors. IEEE Trans. Image Process. 28(4), 2089–2102 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Kajo, I., Kamel, N., Ruichek, Y., Malik, A.S.: SVD-based tensor-completion technique for background initialization. IEEE Trans. Image Process. 27(6), 3114–3126 (2018)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  16. Kang, Z., Peng, C., Cheng, Q.: Robust PCA via nonconvex rank approximation. In: IEEE International Conference on Data Mining, pp. 211–220 (2015)

  17. Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: \(n\)-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the 4th ACM Conference Recommender Systems. ACM, New York (2010)

  18. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensor. Linear Algebra Appl. 435(3), 641–658 (2011)

    Article  MathSciNet  Google Scholar 

  20. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Kreimer, N., Sacchi, M.D.: A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation. Geophysics 77(3), 113–122 (2012)

    Article  ADS  Google Scholar 

  22. Li, X.-T., Ye, Y.-M., Xu, X.-F.: Low-rank tensor completion with total variation for visual data in painting. AAA I, 2210–2216 (2017)

    Google Scholar 

  23. Lieven, D.L., Bart, D.M.: From matrix to tensor: multilinear algebra and signal processing. Math. Signal Process. Inst. Math. Appl. Conf. Ser. New Ser. 71. Oxford University Press, Oxford (1996)

  24. Lin, X.-L., Ng, M.K., Zhao, X.-L.: Tensor factorization with total variation and Tikhonov regularization for low-rank tensor completion in imaging data. J. Math. Imaging Vis. 62, 900–918 (2020)

    Article  MathSciNet  Google Scholar 

  25. Liu, J., Musialski, P., Wonka, P., Ye, J.-P.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)

    Article  PubMed  Google Scholar 

  26. Lu, C.-Y., Feng, J.-S., Chen, Y.-D., Liu, W., Lin, Z.-C., Yan, S.-C.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2020)

    Article  PubMed  Google Scholar 

  27. Mian, A., Hartley, R.: Hyperspectral video restoration using optical flow and sparse coding. Opt. Express 20(10), 10658–10673 (2012)

    Article  ADS  PubMed  Google Scholar 

  28. Mirsky, L.: Symmetric gauge functions and unitarily invariant norm. Quart. J. Math. Oxf. 11, 50–59 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  29. Mørup, M.: Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(1), 24–40 (2011)

    Article  Google Scholar 

  30. Mu, C., Huang, B., Wright, J., Goldfarb, D.: Square deal: lower bounds and improved relaxations for tensor recovery. In: In the International Conference on Machine Learning (ICML), pp. 73–81 (2014)

  31. Ng, M.K., Yuan, Q.-Q., Yan, L., Sun, J.: An adaptive weighted tensor completion method for the recovery of remote sensing images with missing data. IEEE Trans. Geosci. Remote Sens. 55(6), 3367–3381 (2017)

    Article  ADS  Google Scholar 

  32. Pan, P., Wang, Y.-L., Chen, Y.-Y., Wang, S.-Q., He, G.-P.: A new nonconvex rank approximation of RPCA. Sci. Tech. Eng. 17(31), 1671–1815 (2017)

    Google Scholar 

  33. Patwardhan, K.A., Sapiro, G., Bertalmio, M.: Video inpainting under constrained camera motion. IEEE Trans. Image Process. 16(2), 545–553 (2007)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  34. Sauve, A.C., Hero, A.O., Rogers, W.L., Wilderman, S.J., Clinthorne, N.H.: 3D image reconstruction for a Compton Spect Camera model. IEEE Trans. Nucl. Sci. 46(6), 2075–2084 (1999)

    Article  ADS  Google Scholar 

  35. Silva, V.D., Lim, L.H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)

    Article  MathSciNet  Google Scholar 

  36. Sun, J.-T., Zeng, H.-J., Liu, H., Lu, Y.-C., Zheng, C.: CubeSVD: a novel approach to personalized web search. In: Proc. 14th Int. Conf. World Wide Web, pp. 382–390 (2005)

  37. Varghees, V.N., Manikandan, M.S., Gini, R.: Adaptive MRI image denoising using total-variation and local noise estimation. In: Proceedings of the 2012 International Conference on Advances in Engineering, Science and Management (ICAESM), pp. 506–511 (2012)

  38. Wang, B., Gao, X.-B., Tao, D.-C., Li, X.-L.: A unified tensor level set for image segmentation. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 40(3), 857–867 (2010)

    Article  Google Scholar 

  39. Xie, Q., Zhao, Q., Meng, D.-Y., Xu, Z.-B.: Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE Trans. Pattern Anal. Mach. Intell. 40(8), 1888–1902 (2018)

    Article  PubMed  Google Scholar 

  40. Xue, J.-Z., Zhao, Y.-Q., Liao, W.-Z., Chan, C.-W.: Nonconvex tensor rank minimization and its applications to tensor recovery. Inf. Sci. 503, 109–128 (2019)

    Article  MathSciNet  Google Scholar 

  41. Yang, J.-H., Zhao, X.-L., Ma, T.-H., Chen, Y., Huang, T.-Z., Ding, M.: Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization. J. Comput. Appl. Math. 363(4), 124–144 (2020)

    Article  MathSciNet  Google Scholar 

  42. Zhang, L., Zhang, L., Mou, X.-Q., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  43. Zhang, Z.-M., Aeron, S.: Exact tensor completion using t-SVD. IEEE Trans. Signal Process. 65(6), 1511–1526 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  44. Zhao, Q.-B., Zhang, L.-Q., Cichocki, A.: Bayesian CP factorization of incomplete tensors with automatic rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1751–1763 (2015)

    Article  PubMed  Google Scholar 

  45. Zhao, X.-Y., Bai, M.-R., Ng, M.K.: Nonconvex optimization for robust tensor completion from grossly sparse observations. J. Sci. Comput. 85(2), 1–32 (2020)

    Article  MathSciNet  Google Scholar 

  46. Zheng, Y.-B., Huang, T.-Z., Zhao, X.-L., Jiang, T.-X., Ji, T.-Y., Ma, T.-H.: Tensor N-tubal rank and its convex relaxation for low-rank tensor recovery. Inf. Sci. 532, 170–189 (2020)

    Article  MathSciNet  Google Scholar 

  47. Zhou, M.-Y., Liu, Y.-P., Long, Z., Chen, L.-X., Zhu, C.: Tensor rank learning in CP decomposition via convolutional neural network. Signal Process Image Commun. 73(3), 12–21 (2019)

    Article  Google Scholar 

  48. Zhou, W., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant 12071196.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Zheng, B. Tensor completion via multi-directional partial tensor nuclear norm with total variation regularization. Calcolo 61, 19 (2024). https://doi.org/10.1007/s10092-024-00569-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-024-00569-1

Keywords

Navigation