Skip to main content

Augmented spectral formulation for the Stokes problem with variable viscosity and mixed boundary conditions

Abstract

This paper deals with the analysis of a new augmented formulation in terms of vorticity, velocity and pressure for the Stokes equations with variable viscosity and mixed boundary conditions. The well-posedness of the continuous problem holds under assumptions on the viscosity. When the domain is a parallelepiped, the spectral discretization is proposed using the Galerkin method with numerical integration. Then, we prove the well-posedness of the obtained discrete problem under the same type of conditions on the viscosity. A priori error estimates is then derived for the three unknowns. Finally, numerical experiments are presented that confirm the interest of the discretization.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Amara, M., Capatina-Papaghiuc, D., Trujillo, D.: Stabilized finite element method for navier-stokes equations with physical boundary conditions. Math. Comput. 76, 1195–1217 (2007)

  2. Amoura, K., Bernardi, C., Chorfi, N., Saadi, S.: Spectral discretization of the stokes problem with mixed boundary conditions. In: Matthias Ehrhardt Germany (ed.) Coupled Fluid Flow in Energy, Biology and Environmental Research. Progress in Computational Physics (PiCP), pp. 42–61 (2) (2012)

  3. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anaya, V., Gómez-Vargas, B., Mora, D., Ruiz-Baier, R.: Incorporating variable viscosity in vorticity-based formulations for Brinkman equations. C. R. Math. Acad. Sci. Paris 357(6), 552–560 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Angot, P.: Well-posed stokes/brinkman and Stokes/Darcy coupling revisited with new jump interface conditions. ESAIM Math. Model. Numer. Anal. 52(5), 1875–1911 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C., Chorfi, N.: Spectral discretization of the vorticity, velocity, and pressure formulation of the stokes problem. SIAM J. Numer. Anal. 44(2), 826–850 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernardi, C., Hecht, F., Nouri, F.-Z.: A new finite-element discretization of the stokes problem coupled with the Darcy equations. IMA J. Numer. Anal. 30(1), 61–93 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernardi, C., Hecht, F., Verfürth, R.: A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions. M2AN Math. Model. Numer. Anal. 43(6), 1185–1201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernardi, C., Maday, Y.: Approximations spectrales de problemes aux limites elliptiques, vol. 10. Springer, Berlin (1992)

    MATH  Google Scholar 

  10. Bernardi, C., Maday, Y.: Spectral methods. In: Handbook of Numerical Analysis, vol. V. North-Holland, Amsterdam, pp. 209–485 (1997)

  11. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations variationnelles de problemes aux limites elliptiques, vol. 45. Springer Science & Business Media, Berlin (2004)

    MATH  Google Scholar 

  12. Bernardi, C., Métivet, B., Pernaud-Thomas, B.: Couplage des équations de navier-stokes et de la chaleur: le modèle et son approximation par éléments finis. ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et Analyse Numérique 29(7), 871–921 (1995)

    Article  MATH  Google Scholar 

  13. Bousbiat, C., Daikh, Y., Maarouf, S.: Spectral discretization of the time-dependent stokes problem with mixed boundary conditions. Math. Methods Appl. Sci. 44, 1–28 (2021)

  14. Conca, C., Parés, C., Pironneau, O., Thiriet, M.: Navier–Stokes equations with imposed pressure and velocity fluxes. Int. J. Numer. Methods Fluids 20(4), 267–287 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Daikh, Y., Chikouche, W.: Spectral element discretization of the heat equation with variable diffusion coefficient. Comment. Math. Univ. Carol. 57(2), 185–200 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Dubois, F.: Vorticity-velocity-pressure formulation for the stokes problem. Math. Methods Appl. Sci. 25(13), 1091–1119 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ern, A., Guermond, J.-L., Quartapelle, L.: Vorticity-velocity formulations of the stokes problem in 3d. Math. Methods Appl. Sci. 22(6), 531–546 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Girault, V.: Incompressible finite element methods for Navier–Stokes equations with nonstandard boundary conditions in \({ R}^3\). Math. Comput. 51(183), 55–74 (1988)

    MATH  Google Scholar 

  19. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes Equations. Number 749 in Finite element Approximation of the Navier–Stokes Equations. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  20. John, V., Kaiser, K., Novo, J.: Finite element methods for the incompressible Stokes equations with variable viscosity. ZAMM J. Appl. Math. Mech. 96(2), 205–216 (2016)

    Article  MathSciNet  Google Scholar 

  21. Mabrouki, Y., Mani Aouadi, S., Satouri, J.: Spectral discretization of Darcy equations coupled with Stokes equations by vorticity–velocity–pressure formulations. Numer. Methods Partial Differ. Equ. 33(5), 1628–1651 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Magenes, E., Lions, J.-L.: Problèmes aux limites non homogènes et applications... Dunod (1968)

  23. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  24. Salmon, S.: Développement numérique de la formation tourbillon-vitesse-pression pour le problème de stokes. PhD thesis, Paris 6 (1999)

  25. Yakoubi, D.: Analyse et mise en œuvre de nouveaux algorithmes en méthodes spectrales. Ph.D. thesis, Université Pierre et Marie Curie, Paris, Décembre (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yakoubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bousbiat, C., Daikh, Y., Maarouf, S. et al. Augmented spectral formulation for the Stokes problem with variable viscosity and mixed boundary conditions. Calcolo 60, 36 (2023). https://doi.org/10.1007/s10092-023-00530-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-023-00530-8

Keywords

Mathematics Subject Classification