Skip to main content
Log in

Numerical analysis for backward Euler spectral discretization for Stokes equations with boundary conditions involving the pressure: part I

Calcolo Aims and scope Submit manuscript

Cite this article

Abstract

In this paper, we address the study of the time-dependent Stokes system with boundary conditions involving the pressure. We obtain existence and uniqueness for a class of Lipschitz-continuous domains. Next, a spectral discretizations of the problem is proposed combined with the backward Euler scheme. The discrete spaces are defined in a way to give exactly divergence-free discrete approximations for the velocity. Then, we prove the associated discrete inf–sup condition and derive a priori error estimates. Finally, some numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amoura, K., Bernardi, C., Chorfi, N., Saadi, S.: Spectral discretization of the stokes problem with mixed boundary conditions. Prog. Comput. Phys. 2, 42–61 (2012)

    Google Scholar 

  2. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amrouche, C., Seloula, N.: \(L^p\)-theory for vector potentials and Sobolev’s inequalities for vector fields: application to the Stokes equations with pressure boundary conditions. Math. Models Methods Appl. Sci. 23(1), 37–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bègue, C., Conca, C., Murat, F., Pironneau, O.: Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression. In: Nonlinear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. IX (Paris, 1985–1986), Pitman Res. Notes Math. Ser., vol. 181, pp. 179–264. Longman Sci. Tech., Harlow (1988)

  5. Bernard, J.M.: Non-standard Stokes and Navier–Stokes problems: existence and regularity in stationary case. Math. Methods Appl. Sci. 25(8), 627–661 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernard, J.M.: Time-dependent Stokes and Navier–Stokes problems with boundary conditions involving pressure, existence and regularity. Nonlinear Anal. Real World Appl. 4(5), 805–839 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernard, J.M.: Spectral discretizations of the Stokes equations with non standard boundary conditions. J. Sci. Comput. 20(3), 355–377 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernardi, C., Canuto, C., Maday, Y.: Spectral approximations of the Stokes equations with boundary conditions on the pressure. SIAM J. Numer. Anal. 28(2), 333–362 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bernardi, C., Chacón Rebollo, T., Yakoubi, D.: Finite element discretization of the Stokes and Navier–Stokes equations with boundary conditions on the pressure. SIAM J. Numer. Anal. 53(3), 1256–1279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernardi, C., Dauge, M., Maday, Y.: Interpolation of nullspaces for polynomial approximation of divergence-free functions in a cube. In: Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993), Lecture Notes in Pure and Appl. Math., vol. 167, pp .27–46. Dekker, New York (1995)

  11. Bernardi, C., Maday, Y.: Spectral methods. In: Handbook of Numerical Analysis, Handb. Numer. Anal., V, vol. V, pp. 209–485. North-Holland, Amsterdam (1997)

  12. Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations Variationnelles de Problèmes Aux Limites Elliptiques. Mathématiques et Applications. Springer, Berlin (2004)

    MATH  Google Scholar 

  13. Bertoluzza, S., Chabannes, V., Prud’homme, C., Szopos, M.: Boundary conditions involving pressure for the Stokes problem and applications in computational hemodynamics. Comput. Methods Appl. Mech. Eng. 322, 58–80 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boland, J.M., Nicolaides, R.A.: Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20(4), 722–731 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, vol. 183. Springer Science & Business Media (2012)

  16. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Scientific Computation. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  17. Rebollo, T. Chacón., Lewandowski, R.: Mathematical and Numerical Foundations of Turbulence Models and Applications. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser/Springer, New York (2014)

  18. Conca, C., Murat, F., Pironneau, O.: The Stokes and Navier–Stokes equations with boundary conditions involving the pressure. Japan J. Math. (N.S.) 20(2), 279–318 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Del Pino, S., Pironneau, O.: A fictitious domain based general PDE solver. In: Numerical Methods for Scientific Computing. Variational Problems and Applications, pp. 20–30. Internat. Center Numer. Methods Eng. (CIMNE), Barcelona (2003)

  20. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations, Theory and Algorithms. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)

  21. John, V.: Finite Element Methods for Incompressible Flow Problems. Springer Series in Computational Mathematics, vol. 51. Springer, Cham (2016)

  22. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968)

    MATH  Google Scholar 

  24. Marušić, S.: On the Navier–Stokes system with pressure boundary condition. Ann. Univ. Ferrara Sez. VII Sci. Mat. 53(2), 319–331 (2007)

  25. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  26. Landriani, G. Sacchi., Vandeven, H.: Polynomial approximation of divergence-free functions. Math. Comput. 52(185), 103–130 (1989)

  27. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. Studies in Mathematics and Its Applications, vol. 2. North-Holland Publishing Co., Amsterdam (1977)

  28. Yakoubi, D.: Analyse et Mise En øeuvre de Nouveaux Algorithmes En Méthodes Spectrales. PhD Thesis, Université Pierre et Marie Curie, Paris (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yakoubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boussoufa, O., Daikh, Y. & Yakoubi, D. Numerical analysis for backward Euler spectral discretization for Stokes equations with boundary conditions involving the pressure: part I. Calcolo 60, 25 (2023). https://doi.org/10.1007/s10092-023-00520-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-023-00520-w

Keywords

Mathematics Subject Classification

Navigation