Skip to main content
Log in

Gradient recovery based a posteriori error estimator for the adaptive direct discontinuous Galerkin method

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper, we propose a gradient recovery method for the direct discontinuous Galerkin (DDG) method. A quadratic polynomial is obtain by using the local discrete least-squares fitting to the gradient of numerical solution at certain sampling points. The recovered gradient is defined on a piecewise continuous space, and it may be discontinuous on the whole domain. Based on the recovered gradient, we introduce a posteriori error estimator which takes the \(L^2\) norm of the difference between the direct and post-processed approximations. Some benchmark test problems with typical difficulties are carried out to illustrate the superconvergence of the recovered gradient and validate the asymptotic exactness of the recovery-based a posteriori error estimator. Most of the test problems are from the US National Institute for Standards and Technology (NIST).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, T.: A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 142(1–2), 1–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuvška, I., Rheinboldt, W.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Strouboulis, T.: The Finite Element Method and its Reliability. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  4. Baňas, L., Nürnberg, R.: Adaptive finite element methods for Cahn–Hilliard equations. J. Comput. Appl. Math. 281(1), 2–11 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becker, R., Hansbo, P., Larson, M.G.: Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 192(5), 723–733 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85(4), 579–608 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal. 49(5), 1761–1787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47(3), 2132–2156 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, Z., Zhang, S.: Recovery-based error estimators for interface problems: mixed and nonconforming finite elements. SIAM J. Numer. Anal. 48(1), 30–52 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, H., Huang, Y., Yi, N.: Adaptive direct discontinuous Galerkin method for elliptic equations. Comput. Math. Appl. 97, 394–415 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Z., Dai, S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Sci. Comput. 24(2), 443–462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Creusé, E., Nicaise, S.: Anisotropic a posteriori error estimation for the mixed discontinuous Galerkin approximation of the stokes problem. Numer. Methods Partial Differ. Equ. 22(2), 449–483 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Creusé, E., Nicaise, S.: A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods. J. Comput. Appl. Math. 234(10), 2903–2915 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dhondt, S., Nicaise, S.: Equilibrated error estimators for discontinuous Galerkin methods. Numer. Methods Partial Differ. Equ. 24(5), 1236–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, Q., Zhang, J.: Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations. SIAM J. Sci. Comput. 30(3), 1634–1657 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hansbo, P., Becker, R., Larson, M.: Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 192(5), 723–733 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Hoppe, R.H.W., Kanschat, G., Warburton, T.: Convergence analysis of an adaptive interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 47(1), 534–550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Houston, P., Perugia, I., Schötzau, D.: Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator. Comput. Methods Appl. Mech. Eng. 194(2–5), 499–510 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Houston, P., Schötzau, D., Wihler, T.: Energy norm a posteriori error estimation of HP-adaptive discontinuous Galerkin methods for elliptic problems. Math. Models Methods Appl. Sci. 17(1), 33–62 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, H., Chen, Z., Li, J., et al.: Direct discontinuous Galerkin method and its variations for second order elliptic equations. J. Sci. Comput. 70(2), 1–22 (2016)

    MathSciNet  Google Scholar 

  21. Karakashian, O., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kellogg, R.: On the Poisson equation with intersecting interfaces. Appl. Anal. 4(2), 101–129 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lankalapalli, S., Flaherty, J., Shephard, M., Strauss, H.: An adaptive finite element method for magnetohydrodynamics. J. Comput. Phys. 25(1), 363–381 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47(1), 675–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Löhner, R.: An adaptive finite element scheme for transient problems in CFD. Comput. Methods Appl. Mech. Eng. 61(3), 323–338 (1987)

    Article  MATH  Google Scholar 

  27. Mitchell, F.: A collection of 2D elliptic problems for testing adaptive grid refinement algorithms. Appl. Math. Comput. 220(1), 350–364 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16, 47–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shahbazi, K.: An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205(2), 401–407 (2005)

    Article  MATH  Google Scholar 

  30. Sun, S., Wheeler, M.: \(L^2(H^1)\) norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems. J. Sci. Comput. 22–23(1), 501–530 (2005)

    Article  MATH  Google Scholar 

  31. Vidden, C., Yan, J.: The direct discontinuous Galerkin method with symmetric structure for diffusion problems. J. Comput. Math. 31(6), 638–662 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, H., Yang, W., Huang, Y.: Adaptive finite element method for the sound wave problems in two kinds of media. Comput. Math. Appl. 79(3), 789–801 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wei, H., Huang, Y.: FEALPy: finite element analysis library in Python. Xiangtan University. https://github.com/weihuayi/fealpy (2017–2021)

  34. Yan, J.: A new nonsymmetric discontinuous Galerkin method for time dependent convection diffusion equations. J. Sci. Comput. 54(2–3), 663–683 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zienkiewicz, O., Zhu, J.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zienkiewicz, O., Zhu, J.: The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Cao’s research was supported by Hunan Provincial Innovation Foundation for Postgraduate(CX20200619). Huang’s reserach was partially supported by NSFC Project (11971410) and China’s National Key R &D Programs (2020YFA0713500). Yi’s reserach was partially supported by NSFC Project (12071400), Hunan Provincial NSF Project (2021JJ40189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianyu Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, H., Huang, Y. & Yi, N. Gradient recovery based a posteriori error estimator for the adaptive direct discontinuous Galerkin method. Calcolo 60, 18 (2023). https://doi.org/10.1007/s10092-023-00513-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-023-00513-9

Keywords

Mathematics Subject Classification

Navigation