Skip to main content
Log in

Data-driven sparse identification of nonlinear dynamical systems using linear multistep methods

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

Linear multistep methods (LMMs) are popular time discretization schemes for solving the forward problem on differential equations. Recently, LMMs together with deep neural networks have been shown to successfully discover dynamical systems from data. In this work, we propose a class of LMM-based sparse regression approaches for the discovery of nonlinear dynamical systems. The work builds on the sparse identification of nonlinear dynamics (SINDy) framework presented in Brunton et al. (Proc Natl Acad Sci USA 113: 3932–3937, 2016), allowing closed form expression for the governing equations and therefore the resulting data-driven model can give insights into the underlying physics. Compared to the standard SINDy algorithm, the proposed LMM-based SINDy approach allows for more accurate and robust model recovery from data with a wide range of noise levels, without requiring pointwise derivative approximations and conventional noise filtering. Numerical results are presented to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Both, G.-J., Choudhury, S., Sens, P., Kusters, R.: DeepMod: deep learning for model discovery in noisy data. J. Comput. Phys. 428, 109985 (2021)

    MathSciNet  MATH  Google Scholar 

  2. Brunton, S.L., Kutz, J.N.: Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019)

    MATH  Google Scholar 

  3. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 113, 3932–3937 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Cortiella, A., Park, K.-C., Doostan, A.: Sparse identification of nonlinear dynamical systems via reweighted \(l_1\)-regularized least squares. Comput. Methods Appl. Mech. Eng. 376, 113620 (2021)

    MATH  Google Scholar 

  5. Du, Q., Gu, Y., Yang, H., Zhou, C.: The discovery of dynamics via linear multistep methods and deep learning: error estimation. SIAM J. Numer. Anal. 60, 2014–2045 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Fasel, U., Kutz, J.N., Brunton, B.W., Brunton, S.L.: Ensemble-SINDy: robust sparse model discovery in the low-data, high-noise limit, with active learning and control. Proc. R. Soc. A 478, 20210904 (2021)

    MathSciNet  Google Scholar 

  7. Gander, W., Gander, M., Kwok, F.: Scientific Computing: An Introduction Using Maple and MATLAB. Springer, Berlin (2014)

    MATH  Google Scholar 

  8. Goyal, P., Benner, P.: Discovery of nonlinear dynamical systems using a Runge–Kutta inspired dictionary-based sparse regression approach. Proc. R. Soc. A 478, 20210883 (2022)

    MathSciNet  Google Scholar 

  9. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, Berlin (1996)

    MATH  Google Scholar 

  10. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential Algebraic Problems. Springer, Berlin (1996)

    MATH  Google Scholar 

  11. Harlim, J., Jiang, S.W., Liang, S., Yang, H.: Machine learning for prediction with missing dynamics. J. Comput. Phys. 428, 109922 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Kang, S.H., Liao, W., Liu, Y.: IDENT: identifying differential equations with numerical time evolution. J. Sci. Comput. 87, 1 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Kariya, T., Kurata, H.: Generalized Least Squares. Wiley, New York (2004)

    MATH  Google Scholar 

  15. Keller, R.T., Du, Q.: Discovergy of dynamics using linear multistep methods. SIAM J. Numer. Anal. 59, 429–455 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Long, Z., Lu, Y., Dong, B.: pde-net 2.0: learning pdes from data with a numeric-symbolic hybrid deep network. J. Comput. Phys. 399, 108925 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Lu, F., Zhong, M., Tang, S.: Nonparametric inference of interaction laws in systems of agents from trajectory data. Proc. Natl. Acad. Sci. USA 116, 14424–14433 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Mangan, N.M., Kutz, J.N., Brunton, S.L., Proctor, J.L.: Model selection for dynamical systems via sparse regression and information criteria. Proc. R. Soc. A 473, 20170009 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Marx, V.: Biology: the big challenges of big data. Nature 498, 255–260 (2013)

    Google Scholar 

  20. Messenger, D.A., Bortz, D.M.: Weak SINDy: Galerkin-based data-driven model selection. Multiscale Model. Simul. 19, 1474–1497 (2021)

    MathSciNet  MATH  Google Scholar 

  21. Messenger, D.A., Bortz, D.M.: Weak SINDy for partial differential equations. J. Comput. Phys. 443, 110525 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Qin, T., Wu, K., Xiu, D.: Data driven governing equation approximation using deep neural networks. J. Comput. Phys. 395, 620–635 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Inferring solutions of differential equations using noisy multifidelity data. J. Comput. Phys. 335, 736–746 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Machine learning of linear differential equations using Gaussian processes. J. Comput. Phys. 348, 683–693 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Raissi, M., Perdikaris, P., Karniadakis, G. E.: Multistep neural newworks for data-driven discovery of nonlinear dynamical systems. arXiv:1801.01236, (2018)

  27. Rudy, S.H., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of partial differential equations. Sci. Adv. 3, e1602614 (2017)

    Google Scholar 

  28. Rudy, S.H., Alla, A., Brunton, S.L., Kutz, J.N.: Data-driven identification of parametric partial differential equations. SIAM J. Appl. Dyn. Syst. 18, 643–660 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Rudy, S.H., Kutz, J.N., Brunton, S.L.: Deep learning of dynamics and signal-noise decomposition with time-stepping constraints. J. Comput. Phys. 396, 483–506 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Schaeffer, H.: Learning partial differential equations via data discovery and sparse optimization. Proc. R. Soc. A 473, 20160446 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Schaeffer, H., McCalla, S.G.: Sparse model selection via integral terms. Phys. Rev. E 96, 023302 (2017)

    MathSciNet  Google Scholar 

  32. Schaeffer, H., Tran, G., Ward, R.: Extracting sparse high-dimensional dynamics from limited data. SIAM J. Appl. Math. 78, 3279–3295 (2018)

    MathSciNet  MATH  Google Scholar 

  33. Schaeffer, H., Tran, G., Ward, R., Zhang, L.: Extracting structured dynamical systems using sparse optimization with very few samples. Multiscale Model. Simul. 18, 1435–1461 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009)

    Google Scholar 

  35. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Tipireddy, R., Perdikaris, P., Stinis, P., Tartakovsky, A.: A comparative study of physics-informed neural network models for learning unknown dynamics and constitutive relations. arXiv:1904.04058, (2019)

  37. Tran, G., Ward, R.: Exact recovery of chaotic systems from highly corrupted data. Multiscale Model. Simul. 15, 1108–1129 (2017)

    MathSciNet  Google Scholar 

  38. Wang, W.-X., Yang, R., Lai, Y.-C., Kovanis, V., Grebogi, C.: Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett. 106, 154101 (2011)

    Google Scholar 

  39. Wu, K., Xiu, D.: Numerical aspects for approximating governing equations using data. J. Comput. Phys. 384, 200–221 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Wu, K., Xiu, D.: Data-driven deep learning of partial differential equations in modal space. J. Comput. Phys. 408, 109307 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Wu, K., Qin, T., Xiu, D.: Structure-preserving method for reconstructing unknown Hamiltonian systems form trajectory data. SIAM J. Sci. Comput. 42, A3704–A3729 (2020)

    MATH  Google Scholar 

  42. Xie, X., Zhang, G., Webster, C.G.: Non-instructive inference reduced order model for fluids using deep multistep neural network. Mathematics 7, 757 (2019)

    Google Scholar 

  43. Zhang, L., Schaeffer, H.: On the convergence of the SINDy algorithm. Multiscale Model. Simul. 17, 948–972 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, S., Lin, G.: Robust data-driven discovergy of governing physical laws with error bars. Proc. R. Soc. A 474, 20180305 (2018)

    MATH  Google Scholar 

  45. Zhang, S., Lin, G.: SubTSBR to tackle high noise and outliers for data-driven discovery of differential equations. J. Comput. Phys. 428, 109962 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of the paper. This work was supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJQN202000543), the Natural Science Foundation Project of CQ CSTC (No. cstc2021jcyj-msxmX0034), and the Program of Chongqing Innovation Research Group Project in University (No. CXQT19018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H. Data-driven sparse identification of nonlinear dynamical systems using linear multistep methods. Calcolo 60, 11 (2023). https://doi.org/10.1007/s10092-023-00507-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-023-00507-7

Keywords

Mathematics Subject Classification

Navigation