Abstract
We present precise Raviart–Thomas interpolation error estimates on anisotropic meshes. The novel aspect of our theory is the introduction of a new geometric parameter of simplices. It is possible to obtain new anisotropic Raviart–Thoma error estimates using the parameter. We also include corrections to an error in “General theory of interpolation error estimates on anisotropic meshes” (Japan Journal of Industrial and Applied Mathematics, 38 (2021) 163-191), in which Theorem 3 was incorrect.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Acosta, G., Durán, R.G.: The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations. SIAM J. Numer. Anal 37, 18–36 (1999)
Acosta, G., Apel, Th., Durán, R.G., Lombardi, A.L.: Error estimates for Raviart–Thomas interpolation of any order on anisotropic tetrahedra. Math. Comput. 80(273), 141–163 (2010)
Apel, Th.: Anisotropic finite elements: local estimates and applications. Advances in Numerical Mathematics, Teubner, Stuttgart (1999)
Apel, Th., Dobrowolski, M.: Anisotropic interpolation with applications to the finite element method. Computing 47, 277–293 (1992)
Babuška, I., Aziz, A.K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13, 214–226 (1976)
Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, New York (2013)
Brandts, J., Korotov, S., Kížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55, 2227–2233 (2008)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)
Ciarlet, P.G.: The Finite Element Method for Elliptic problems. SIAM, New York (2002)
Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. 34, 441–463 (1980)
Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, New York (2004)
Ern, A., Guermond, J.L.: Finite Elements I: Galerkin Approximation. Elliptic and Mixed PDEs. Springer, New York (2021)
Ishizaka, H.: Anisotropic interpolation error analysis using a new geometric parameter and its applications. Ehime University, Ph. D. thesis (2022)
Ishizaka, H., Kobayashi, K., Tsuchiya, T.: General theory of interpolation error estimates on anisotropic meshes. Jpn. J. Ind. Appl. Math. 38(1), 163–191 (2021)
Ishizaka, H., Kobayashi, K., Tsuchiya, T.: Crouzeix–Raviart and Raviart–Thomas finite element error analysis on anisotropic meshes violating the maximum-angle condition. Jpn. J. Ind. Appl. Math. 38(2), 645–675 (2021)
Ishizaka, H., Kobayashi, K., Suzuki, R., Tsuchiya, T.: A new geometric condition equivalent to the maximum angle condition for tetrahedrons. Comput Math Appl 99, 323–328 (2021)
Ishizaka, H., Kobayashi, K., Tsuchiya, T.: Anisotropic interpolation error estimates using a new geometric parameter. Jpn. J. Ind. Appl. Math. 39(2) (2022)
Kížek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math. Praha 36, 223–232 (1991)
Kížek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29, 513–520 (1992)
Raviart, P. A., Thomas, J.-M.: A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, I. Galligani, E. Magenes, eds., Lectures Notes in Math. 606, Springer Verlag (1977)
Acknowledgements
We would like to thank the anonymous referee for the valuable comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ishizaka, H. Anisotropic Raviart–Thomas interpolation error estimates using a new geometric parameter. Calcolo 59, 50 (2022). https://doi.org/10.1007/s10092-022-00494-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10092-022-00494-1